
MATH 761: DIFFERENTIABLE MANIFOLDS (UW-MADISON, FALL
2024)

ALEX WALDRON

Contents

Part 1. Topological and smooth manifolds 3

1. Topological manifolds: definition and examples (Wed 9/4) 3

2. Properties of topological manifolds (Fri 9/6 - Mon 9/9) 7

3. Smooth manifolds: definition and examples (Mon 9/9-Fri 9/13) 10

4. More smooth manifolds (Fri 9/13-Mon 9/16) 13

5. Smooth partitions of unity (Wed 9/18) 17

Part 2. The tangent space 21

6. Definition(s) of the tangent space (Fri 9/20) 21

7. Derivative of a function, cotangent space, derivative of a map (Mon 9/23) 25

8. The tangent bundle and vector fields (Mon 9/23) 27

Part 3. Immersions, submersions, submanifolds 30

9. The inverse function theorem (Wed 9/25) 30

10. Local diffeomorphisms and covering maps (Wed 9/25) 32

11. Immersions and embeddings (Fri 9/27) 34

12. Submersions and the constant rank theorem (Fri 9/27-Mon 9/30) 37

13. Submanifolds (Wed 10/2) 41

14. Jacobian criteria (Fri 10/4-Mon 10/7) 44

15. The embedding problem (Mon 10/7) 48

Part 4. Vector fields 52

16. Vector fields, derivations, and the Lie bracket (Wed 10/09) 52

17. Vector fields tangent to submanifolds, F -related vector fields (Fri 10/11) 56

18. Descent of vector fields, quotient manifolds (Fri 10/11) 58

19. Integral curves and flows (Mon 10/14) 61

20. Properties of flows (Wed 10/16) 65

21. The Lie derivative (Wed 10/16-Fri 10/18) 67

22. Commuting vector fields (Fri 10/18-Mon 10/21) 69

Part 5. Lie groups and Lie algebras 72

23. Definition and examples (Mon 10/21) 72

Date: December 17, 2024.



2 ALEX WALDRON

24. Lie-group actions, homomorphisms, subgroups (Wed 10/23) 73

25. The Equivariant Rank Theorem (Fri 10/25) 77

26. The Lie algebra of a Lie group (Mon 10/28-Wed 10/30) 81

27. Adjoint representation(s), exponential map (Wed 10/30-Fri 11/1) 84

28. Example: SU(2) → SO(3) (Fri 11/1) 88

Part 6. Vector bundles 91

29. Linear algebra (Mon 11/4) 91

30. Vector bundles (Wed 11/06) 98

31. Transition functions (Fri 11/08) 101

32. Bundle operations, subbundles (Fri 11/08-Mon 11/11) 103

33. Orientation of vector bundles (Mon 11/11-Wed 11/13) 106

34. Example: O(n) → CP1 (Wed 11/13) 108

Part 7. Tensors and differential forms 111

35. Smooth bundles, tensor characterization lemma (Fri 11/15) 111

36. Tensors on smooth manifolds, pullback, Lie derivative (Mon 11/18) 114

37. Differential forms (Mon 11/18-Wed 11/20) 116

38. The exterior derivative (Wed 11/20-Fri 11/22) 119

39. Cartan’s magic formula (Fri 11/22) 124

Part 8. De Rham cohomology 125

40. The de Rham complex (Fri 11/22-Mon 11/25) 125

41. The Mayer-Vietoris sequence (Wed 11/27) 128

Part 9. Integration of differential forms 131

42. Motivation (Mon 12/2) 131

43. Integration on Rn (Mon 12/2) 131

44. Orientation of manifolds (Mon 12/2-Wed 12/4) 133

45. Integration on manifolds (Wed 12/4-Fri 12/6) 135

46. Integration on manifolds with boundary (Wed 12/4-Fri 12/6) 138

Part 10. Cohomology and integration 141

47. Compactly-supported de Rham cohomology and the integration map (Fri 12/6) 141

48. Top cohomology (Mon 12/9) 141

49. The de Rham isomorphism (Mon 12/9) 144

50. Mapping degree (Wed 12/11) 145
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Part 1. Topological and smooth manifolds

1. Topological manifolds: definition and examples (Wed 9/4)

1.1. The definition. We want to study a class of topological spaces that retains certain

essential features of Rn. Our first attempt is the following.

Definition 1.1. Let n ∈ N. A topological space M is called a topological manifold of

dimension n if it is:

1. Hausdorff: given any p ≠ q ∈ M, there exist open neighborhoods U ∋ p and V ∋ q
such that U ∩ V = ∅.

2. Second-countable: M has a countable basis. (A basis B is a collection of open sets

such that any open set is a union of elements of B.)

3. Locally Euclidean: For each p ∈M, there exists a neighborhood U ∋ p, an open set

Û ⊂ Rn, and a homeomorphism

φ ∶ U ∼→ Û.

With this definition comes the following terminology.

● φ is called a coordinate chart.

● If φ(p) = 0, we say that the chart is centered at p.

● If Û = Br(0) for some r > 0 and φ(p) = 0, the chart is called a coordinate ball centered

at p.

● If we write

φ(q) = (x1(q), . . . , xn(q)) ,
for q ∈ U, the functions x1, . . . , xn are called local coordinates.

1.2. Examples. We will spend the rest of class today giving examples of manifolds.

Example 1.2. Nature is full of manifolds. For instance, the surface of the Earth is a

manifold which people assumed to be R2 for most of human history. In fact it turned out

to be only locally Euclidean, but globally to have the shape of the 2-sphere. We still do not

know the shape of the universe (seen as a manifold of dimension at least four).
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For the rest of the semester we will limit ourselves to examples of a purely mathematical

nature.

Example 1.3. Let Ω ⊂ Rn be any open set, with the subspace topology. It is Hausdorff and

second-countable because Rn is. It is also locally Euclidean, with a single coordinate chart:

U = Û = Ω, φ = Id.
Example 1.4. Let V ⊂ Rn be an open set and f ∶ V → Rk a continuous function. Consider

the graph

Γ(f) = {(x, y) ∈ Rn ×Rk ∣ y = f(x)},
with the subspace topology. This is again Hausdorff and second-countable. To make a

coordinate chart, let U = Γ(f), Û = V ⊂ Rn, and consider the restriction of the projection to

the first factor:

φ = π1 ∶ Γ(f) → V

(x, y) ↦ x.
(1.1)

This has an inverse function given by

x↦ (x, f(x)),
which is continuous since it is the product of two continuous functions. Therefore φ is a

homeomorphism, as required.

Example 1.5. Let

Sn = {x ∈ Rn+1 ∣ (x1)2 +⋯ + (xn+1)2 = 1},
with the subspace topology. This is called the n-sphere, and we will see that it is a manifold

of dimension n. As above it is Hausdorff and 2nd-countable since it is a subspace of Rn+1.

We will now describe coordinate charts that cover Sn.

Fix i ∈ {1, . . . , n + 1}, and let

U+i = {x ∈ Sn ∣ xi > 0}
U−i = {x ∈ Sn ∣ xi < 0}.

Also let Ûi = B1(0) ⊂ Rn. Define the coordinate charts

φ±i = πi ∶ U±i → B1(0)
(x1, . . . , xn+1) ↦ (x1, . . . , x̂i, . . . , xn+1).

(The notation x̂i means that we actually skip the i’th entry on the list. Another way to

write it would be: (x1, . . . , x̂i, . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn+1).)
To see that φ±i is a homeomorphism, it suffices to write down the following inverse function.

(u1, . . . , un) ↦ (u1, . . . , ui−1,±
√

1 −∑
i

(ui)2, ui+1, . . . , un).

It is easy to check that this is indeed an inverse function of φ±i .

We can use the collection of 2(n + 1) charts {U±i } (this is called an atlas, as we’ll discuss

next week) to show that Sn is locally Euclidean, as follows. Given a point x ∈ Sn, we must

have xi ≠ 0 for some i. If xi > 0 then x ∈ U+i , whereas if xi < 0 then x ∈ U−i . Hence x is

contained in a coordinate chart. Since x ∈ Sn was arbitrary, this shows that Sn is locally

Euclidean.



MATH 761: DIFFERENTIABLE MANIFOLDS (UW-MADISON, FALL 2024) 5

Example 1.6. Generalizing the previous example, we will prove later that the inverse image

of any regular value of a C1 function from Rn to Rm, n ≥ m, is a manifold of dimension

n−m. This is the content of the implicit function theorem, which is the source of many very

interesting examples of manifolds.

Example 1.7. The Cartesian product of two manifolds, M ×N, is again a manifold. The

coordinate charts are given by products of the charts on M and N ∶

U × V φ×ψÐ→ Rm ×Rn.

Example 1.8. The 2-torus is defined to be the Cartesian product

T2 = S1 × S1.

This manifold has many equivalent representations. You can draw it as a “doughnut” in

Euclidean space. You can also define it as the unit square with boundary points identified

as follows:

[0,1]2 /(x,0) ∼ (x,1), (0, y) ∼ (1, y),
with the quotient topology. It is a simple exercise to write down a homeomorphism between

this space and T2 = S1 × S1. Finally, since S1 = R/Z, where n ∈ Z acts by x↦ x + n, we have

T2 = (R/Z) × (R/Z) ≅ R2/Z2,

where (m,n) ∈ Z2 acts by

(x, y) ↦ (x +m,y + n).
The map R2 → R2/Z is the best example of a covering map, which is a concept that I hope

you have seen before. If you are familiar with covering maps, you should have no trouble

proving the following fact: if M → N is a covering map and M is a topological manifold,

then N is also a topological manifold.

Example 1.9. Define the Möbius strip:

M = [0,1] × (−1
2
,
1

2
) / (0, y) ∼ (1,−y),

with the quotient topology based on this equivalence relation. It is an exercise in the quotient

topology (on your first homework) to show that M is a topological manifold. Note that as

with the torus, we have the equivalent description

M ≅ R × (−1
2
,
1

2
) / Z,

where n ∈ Z acts by (x, y) ↦ (x + n, (−1)ny).
Example 1.10. It is possible to close up the Möbius strip to obtain the Klein bottle:

K = [−1
2
,
1

2
] × [−1

2
,
1

2
] / (−1

2
, y) ∼ (1

2
,−y) ,(x,−1

2
) ∼ (−x, 1

2
) .

This a compact manifold that can be thought of as a “twisted” version of the 2-torus. It

has the interesting property that it cannot be embedded in R3 without crossing itself. This

requires a fair bit of algebraic topology to prove.
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Example 1.11. As a set, the real projective space of dimension n is defined to be

RPn = {1-dimensional subspaces of Rn+1}.

We must also specify the topology on RPn. Letting

π ∶ Rn+1 ∖ {0} → RPn

x↦ [x] = {cx ∣ x ∈ R}

be the canonical projection, we endow RPn with the quotient topology induced by π.

We now describe a collection of coordinate charts covering RPn. Given i ∈ {1, . . . , n + 1},
let

Vi = {x ∈ Rn+1 ∣ xi ≠ 0} ⊂ Rn+1.

These are “saturated” open sets for the map π, i.e., if x ∈ Vi then the whole fiber π−1([x]) ⊂ Vi.
By definition of the quotient topology,

Ui ∶= π(Vi)

is open in RPn. To make Ui into a coordinate chart, we let

φi ∶ Ui → Rn =∶ Ûi

[x] = [x1, . . . , xn] ↦ (x
1

xi
, . . . ,

x̂i

xi
, . . . ,

xn+1

xi
) .

It is easy to check that φi ([cx]) = φi ([x]) , so φi is well-defined. Since φi ○ π ∶ Vi → Rn is

continuous, by the universal property of the quotient topology, the map φi is also continuous.

To check that φi is a homeomorphism, we need only write down the inverse map:

(1.2) (u1, . . . , un) ↦ [u1, . . . , ui−1,1, ui, . . . , un] ,

which one easily checks is an inverse of φi. Therefore φi is a coordinate chart, for each i.

(Notice that the codomain Ûi of each chart is equal to Rn itself! This is convenient.) Since

∪iUi = RPn, we have shown that RPn is locally Euclidean.

To recap, we can write these charts in the following way:

Ui = {[u1, . . . , ui−1,1, ui, . . . , un] ∣ (u1, . . . , un) ∈ Rn}.

This expression makes it almost obvious that these are coordinate charts covering RPn.
On your first homework you are asked to show that in addition to being locally Euclidean,

RPn is Hausdorff, second-countable, and compact ; it is therefore a compact topological man-

ifold. You can either show this directly using the coordinate charts that we just constructed,

or you can make use of the following fact:

Proposition 1.12. RPn ≅ Sn/ ± 1.

Proof. We will write down continuous maps between these two spaces which are inverses. In

one direction, we can restrict the canonical projection to Sn ⊂ Rn+1 ∖ {0} ∶

π∣Sn ∶ Sn → RPn.
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Since this is the restriction of a continuous map to a subspace, it is again continuous. It

is also surjective, since every 1-dimensional subspace of Rn+1 contains unit vectors. In fact,

given x ∈ Rn+1 ∖ {0}, we clearly have

[x] ∩ Sn = {± x∣x∣} .

By the universal property of the quotient topology on Sn/ ± 1, the map π∣Sn descends to a

continuous map Sn/ ± 1→ RPn ∶

Sn //

π∣Sn

&&��

Rn+1 ∖ {0}
π

��

Sn/ ± 1 // RPn

On the other hand, the map x↦ x
∣x∣ also descends to give a continuous map RPn → Sn/ ± 1:

Sn

��

Rn+1 ∖ {0}
x
∣x∣
←[ x

oo

xx

π

��

Sn/ ± 1 RPn.oo

.

These maps are easily seen to be inverses. □

2. Properties of topological manifolds (Fri 9/6 - Mon 9/9)

LetM be a topological manifold. Today we will discuss: what does being a manifold imply

about M, as a topological space? We will see that manifolds behave in a more intuitive way

than general topological spaces.

2.1. Basis of precompact coordinate balls. The properties we will describe all follow

from the proposition below. The key point is the following.

Definition/Lemma 2.1. Let (U,φ) be a coordinate chart in M and V ⊂ U an open subset.

Suppose that the closure of φ(V ) in Rn is compact and contained in Û. Then the closure of

V in M is also compact and contained in U. In this case we write V ⋐ U and say that V is

compactly contained in U.

Proof. Let

Ṽ = φ−1 (φ(V )) ,

where φ(V ) is the closure in Rn. By assumption, φ(V ) ⊂ U is compact, and since φ−1 is

continuous, Ṽ is also compact. But M is Hausdorff, so compact implies closed (exercise!).

Therefore Ṽ is also closed in M. Letting V be the closure of V in M, we have

V ⊂ Ṽ ⊂ V ∩U ⊂ V ,
so V = Ṽ, which is compact and contained in U, as desired. □
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Proposition 2.2. M has a countable basis consisting of precompact coordinate balls. (A set

is called precompact if its closure is compact.)

Proof. SinceM is second-countable, we can coverM with countably many coordinate charts

{(Ui, φi)}∞i=1. Since Ui ≅ Ûi ⊂ Rn, we can choose a countable basis for the topology of Ui
consisting of coordinate balls Vi,j such that φi(Vi,j) ⋐ Ûi. By the previous Lemma, we also

have Vi,j ⋐ Ui.
We can now take {Vi,j}∞i,j=1 as our countable precompact basis. □

2.2. Connected components. Next, recall that there are two notions of connectivity for

a topological space. A space X is connected if there do not exist nonempty subsets A and

B such that A ∪B = X but A ∩ B̄ = Ā ∩B = ∅. A space X is path-connected if for any

p, q ∈X there exists a continuous path γ ∶ [0,1] →X such that γ(0) = p and γ(1) = q.
In general, path-connected implies connected: since the unit interval is connected, its

image is also connected, so cannot be separated by sets A and B as in the definition of

connectedness. However, the converse is not true in general.

When a space is not connected, one can still divide it up into connected components:

X0 ⊂ X is a connected component if it is a maximal connected subset. One can check that

given any point x ∈ X and any two connected subsets containing x, their union is again

connected; so every point is contained in a unique connected component. In particular, we

can partition any topological space X into a disjoint union of connected components:

X = ⊔
α
Xα.

One can also partition a space X into path components, which are maximal path-

connected subsets. This is easier, because being connected by a path is clearly an equivalence

relation so gives a partition of the space.

Proposition 2.3. The path components of M are the same as the connected components. In

particular, any manifold is a countable disjoint union of closed/open, path-connected subsets.

Proof. It suffices to show that the path components of M are all open, for then these give a

partition into closed/open sets which must agree with the connected components.

Let M0 be a path component of M and x ∈M0. There exists a coordinate ball B ∋ x. Since
B is path-connected, we have x ∼ y for all y ∈ B, therefore B ⊂ M0. This shows that M0 is

open.

Since the components are open and M is second-countable, there can only be countably

many of them. □

For this reason, it usually causes no loss of generality to work with connected manifolds—

this is sometimes included in the definition, for convenience.
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2.3. Paracompactness.

Proposition 2.4. M is locally compact, i.e., every point is contained in a neighborhood that

is contained in a compact subset.

Proof. By Proposition 2.2, each point is in fact contained in a precompact open set. □

Next, we will make a definition that you may not have seen before, although it is very

important.

Given two open covers U and V of a topological space X, we say that V is a refinement

of U if each V ∈ V is contained in some U ∈ U . Intuitively, the open sets of V are “smaller”

than that of U .
An open cover U is called locally finite if for all x ∈X, there exists a neighborhoodW ∋ x

such that W ∩U ≠ ∅ for only finitely many U ∈ U .
Definition 2.5. A space X is called paracompact if every open cover admits a locally

finite refinement. (Note: the refinement need not be a subcover of the original open cover.)

Theorem 2.6. A topological manifold M is paracompact.

The proof will be based on:

Lemma 2.7. M admits an exhaustion by compact subsets

K1 ⊂K2 ⊂K3 ⊂ ⋯
such that ∪∞i=1Ki =M and Ki ⊂K○i+1.

Proof. Let U1, U2, . . . be a countable cover by precompact open sets.

Take K1 = Ū1.

By compactness, K1 is covered by the open sets U1, U2, . . . , Un2 for some n2 ∈ N. Take
K2 = ∪n2

i=1Ūi, which is a finite union of compact sets, hence compact. We also have

K○2 = ∪n2
i=1Ui ⊂K1,

as required.

Next, cover K2 by U1, . . . , Un3 , with n3 ≥ n2, etc.

In this way, we can obtain the required exhaustion. □

Proof of Theorem 2.6. Given an open cover U of M, we must construct a locally finite re-

finement. Let B be any basis, and fix an exhaustion Ki, i = 1,2, . . . as guaranteed by the

lemma. Let

Ci =Ki+1 ∖K○i ,
which is a closed subset of a compact set, hence compact. Let

Wi =K○i+2 ∖Ki−1,

which is open. We have Ci ⊂Wi.

Now, for each x ∈ Ci, choose Bx ∈ B such that Bx ∋ x and Bx ⊂ Wi ∩ U for some U ∈ U .
Since Ci is compact, we can cover it by finitely many such neighborhoods, which we label

Bi,j, for j in a finite range. Then {Bi,j}jmax

j=1 covers Ci and refines U .
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We now take the collection of all Bi,j as our refinement of U . To see that it is locally finite,

let x ∈M and choose k such that x ∈Wk. Since Bi,j ∩Wk ≠ ∅ only possibly for i−2 ≤ k ≤ i+2,
we have the required local finiteness property. □

One consequence of paracompactness is that M is metrizable. This abstract fact is not

particularly useful, however. Later we will study a specific type of metric on a manifold,

called a Riemannian metric, that is extremely useful.

Last, we mention another property of manifolds which is not essential for the class, but

good to know about:

Proposition 2.8. The fundamental group of a topological manifold is countable. The fun-

damental group of a compact topological manifold is finitely generated.

Proof. See Lee, Prop. 1.16 for the first statement. The finite generation statement can be

proven similarly. □

3. Smooth manifolds: definition and examples (Mon 9/9-Fri 9/13)

3.1. The definition. As stated above, we want to work with a class of spaces that retain

the essential features of Rn. We defined topological manifolds to be spaces with locally

Euclidean topology, plus some extra reasonableness conditions. On such a space, the notion

of a real-valued continuous function makes sense:

f ∶M → R

is continuous if it is continuous as a map between topological spaces.

However, we really want to work with spaces that retain the most essential feature of Rn,

namely, calculus. Topological manifolds are actually inadequate for this purpose, as we now

explain.

To begin to do calculus, one needs a notion of differentiable function. This should be a

function which, when precomposed with a coordinate chart

f ○ φ−1 ∶ Û ⊂ Rn → R,

is differentiable. However, on a topological manifold, this might be true in one chart but not

in another. For example, we have the following two charts on M = R = U = Û.
φ(x) = x, ψ(u) = u3.

Consider f(x) = x. Then (f ○ φ−1)(x) = x is differentiable, whereas (f ○ ψ−1)(u) = u1/3 is

not. So the notion of a differentiable function on a topological manifold makes no sense in

general.

To avoid this problem, we need to introduce the following definition, which is key for the

course.

Definition 3.1. Let k ∈ {0,1, . . .} ∪ {∞}. A Ck atlas for M is a collection {(Uα, φα)} of

charts, covering M, such that for each α,β, the transition map

φα ○ φ−1β ∶ φβ (Uα ∩Uβ) → φα (Uα ∩Uβ) ⊂ Rn
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is of class Ck, i.e., is k times continuously differentiable.

Two Ck atlases are said to be (Ck) equivalent if their union is again a Ck atlas.

A Ck structure is an equivalence class of Ck atlases on M.

A Ck manifold is a Hausdorff, second-countable topological spaceM equipped with a Ck

structure.

A C∞ manifold is also called a smooth or differentiable manifold.

Exercise. Show that a topological manifold is the same thing as a C0 manifold.

Definition 3.2. LetM be a smooth manifold and V ⊂M an open set. A function f ∶ V → R
is said to be smooth if for each x ∈ V there exists a coordinate chart (U,φ) such that

f ○ φ−1 ∶ φ(V ∩U) ⊂ Rn → R

is smooth.

Let M and N be smooth manifolds. A continuous map f ∶M → N is said to be smooth

if for each x ∈ M there exist compatible coordinate charts (V,φ) and (W,ψ) containing x
and f(x), respectively, such that f(V ) ⊂W and

ψ ○ f ○ φ−1 ∶ V̂ → Ŵ

is smooth.

A smooth map f is said to be a diffeomorphism if it has a smooth inverse.

Exercise. Check that the definitions of smooth function and smooth map make sense on a

smooth manifold.

3.2. Examples. We can go over all the previous examples of topological manifolds and see

that the charts we described are in fact smoothly compatible, i.e., define a smooth structure.

For this, it suffices to compute the transition maps and check that they are smooth.

Example 3.3. In the case of RPn, to show that the charts {(Ui, φi)}n+1i=1 given above define

a smooth structure, one can compute the transition function for i > j ∶

φj ○ φ−1i (u1, . . . , un) = (
u1

uj
, . . . ,

uj−1

uj
,
uj+1

uj
, . . . ,

ui−1

uj
,
1

uj
,
ui

uj
, . . . ,

un

uj
) .

Since uj > 0 on φi(Ui ∩Uj), this is smooth, as required.

Example 3.4 (Stereographic charts). Here is another way of defining the smooth structure

on Sn, which goes back to Riemann.

Let N = (0, . . . ,0,1) and S = (0, . . . ,0,−1) be the North and South poles on Sn, respec-

tively. Denote V + = Sn ∖{N} and V − = Sn ∖{S}. We can make V ± into charts by taking the

linear projection onto the equatorial plane Rn × {0} ⊂ Rn+1. A similar triangles calculation

gives

X ↦ x = 1

1 −Xn+1 (X
1, . . . ,Xn) , X ↦ y = 1

1 +Xn+1 (X
1, . . . ,Xn) .

These are charts on V ± with codomain Rn. One can check that N,X, and x are collinear, as

are S,X, and y.
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To show that this is a chart, we need to derive a formula for the inverse function:

x↦X = 1

∣x∣2 + 1 (2x
1, . . . ,2xn, ∣x∣2 − 1) .

This is left as a homework exercise. We also need to compute the transition map. This turns

out to be given just by inversion in the unit circle:

x↦ y = x

∣x∣2 .

Since x ≠ 0 on V + ∩ V −, the transition map is smooth. The stereographic charts therefore

define a smooth structure on Sn, which you can check is equivalent to the one defined by

the hemisphere charts U±i (exercise).

Example 3.5. Here is an example of a different flavor.

Let V be a finite-dimensional real vector space. We first topologize V using any norm;

since any two norms are equivalent up to constants, this topology is independent of the

norm.

We now define a canonical atlas on V as follows. Given any choice of basis e = {e1, . . . , en}
for V, we have a map

Ee ∶ Rn → V

(x1, . . . , xn) ↦
n

∑
i=1
xiei.

Since e is a basis, this map has a linear inverse, which is continuous. We take

φe = E−1e ∶ V → Rn.

We claim that the collection of charts {(Rn, φe)}, where e runs over all possible bases, is a

smooth atlas. Let e, ẽ be two bases, and write

ei = ∑
j

Aj iẽj

for an invertible matrix (Aij) . For x = φ−1e (x1, . . . , xn) ∈ Rn = Ûe, we have

φẽ ○ φ−1e (x) = φẽ ○Ee (x) = φẽ (∑
i

xiei)

= ∑
i

xiφẽ(ei)

= ∑
i,j

xiAj iφẽ (ẽj)

= (∑
i

xiA1
i, . . . ,∑

i

xiAni) ∈ Rn = Ûẽ.

This is a smooth map, so we indeed have a smooth structure.

Needless to say, the notion of a smooth function coincides with the standard one on Rn

after identifying V ≅ Rn using any choice of basis.
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Example 3.6. Here is another key example. Notice that the space of m × n real matrices,

Matm×nR , is identical with Rm⋅n, so can be considered a Euclidean space. Define

GL(n,R) = {X ∈Matn×nR ∣X is invertible}.
We know of course that X is invertible iff detX ≠ 0. Since detX is a polynomial in the

matrix coefficients, the subset {detX = 0} is closed. Hence GL(n,R) is open in Matn×nR ; by

Example 1.3, it is a manifold (indeed a smooth one, defined by a single chart).

Meanwhile, since the product of two invertible matrices is invertible, GL(n,R) is also a

group. The group law (matrix multiplication) is given by a bilinear function of the matrix

coefficients, so is smooth. By Cramer’s formula, the inverse map X ↦ X−1 is also smooth.

A smooth manifold with smooth group operations is called a Lie group, and these play a

special role in this subject.

3.3. Topological versus smooth manifolds. It has been (and still remains) a celebrated

problem to compare the category of topological manifolds with the category of smooth

manifolds. Here are some historical landmarks.

H. Whitney ’36 : For k ≥ 1, every Ck structure is Ck equivalent to a smooth structure.

E. Moise ’52 : For n < 4, every topological manifold carries a unique smooth structure up

to diffeomorphism.

J. Milnor ’56 : Exotic smooth structures exist. In particular, the topological manifold S7

carries smooth structures that are not diffeomorphic to the standard one.

M. Kervaire ’60 : There exists a compact 10-dimensional topological manifold that carries

no smooth structure at all.

M. Freedman / S. Donaldson ’82 : R4 carries exotic smooth structures.

4. More smooth manifolds (Fri 9/13-Mon 9/16)

4.1. Constructing a manifold from charts. In the previous examples we always started

with a given topological space and then cooked up an atlas of charts covering it. Of course,

the atlas is the most important thing, and it is possible to go the other way: start with

just a set, M, and a collection of maps satisfying certain conditions, and use this to define

a topology on M that makes it into a smooth manifold.

Lemma 4.1 (Smooth manifold chart lemma, Lee 1.35). Let M be a set and suppose we

have a collection of subsets Uα covering M together with maps φα ∶ Uα → Rn satisfying the

following properties:

1. For each α, φα is a bijection between Uα and φα(Uα), which is an open subset of Rn.

2. For each α and β, the sets φα(Uα ∩Uβ) and φβ(Uα ∩Uβ) are open in Rn.

3. Whenever Uα ∩Uβ ≠ 0, the map

φα ○ φ−1β ∶ φβ(Uα ∩Uβ) → φα(Uα ∩Uβ)
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is smooth.

4. Countably many of the Uα cover M.

5. Whenever p, q are distinct points in M, either there exists some Uα containing both

p and q or there exist disjoint sets Uα and Uβ with p ∈ Uα and q ∈ Uβ.

Then M has a unique smooth manifold structure such that each (Uα, φα) is a chart.

Proof. As a basis for the topology on M, we take the collection of all inverse images φ−1α (V )
where V is open in Rn. To check that this is the basis for a topology, one needs to know that

the intersection of two such sets, φ−1α (V ) ∩ φ−1β (W ) is covered by basis elements. In fact, it

is itself a basis element. For, since φβ ○ φ−1α is smooth, it is continuous, and

Z = (φβ ○ φ−1α )
−1 (W ) ⊂ φα(Uα ∩Uβ) ⊂ Rn

is open. It follows that

φ−1α (V ) ∩ φ−1β (W ) = φ−1α (V ∩Z)

is also a basis element, as claimed. Therefore these open sets form the basis for a topology.

It is easy to see that φα is a homeomorphism with this definition, and is clearly a smooth

atlas. The Hausdorff property is clear from the last assumption: in the first case, we can

separate the points by balls contained in Uα, while in the second case, Uα and Uβ are

the separating neighborhoods. Finally, the second-countability follows because each Uα is

second-countable and by assumption we can take a countable subcollection that still covers

M.

The uniqueness is also clear since the basis we described will be a basis for any topology

in which the above requirements are satisfied. □

Remark 4.2. One can go even further and define the set M by gluing the sets Uα using

the equivalence relation coming from a given collection of transition maps, subject to the

appropriate conditions. Some people really think of a smooth manifold as “a bunch of

domains in Euclidean space glued together.” In my opinion it’s better to think of it as a

preexisting set endowed with additional structure.

4.2. CPn and Grassmannians. We will now use the above lemma to do two more examples.

Let K = R or C. These are topological fields on R and R2, respectively, so the vector space

Kn is identical to Rn and R2n, respectively, and the field operations are all given by smooth

maps. For instance, scalar multiplication gives a smooth map K ×Kn →Kn, which restricts

to a diffeomorphism {c} ×Kn → Kn, for c ≠ 0. Addition by a fixed vector is also clearly a

diffeomorphism.

Example 4.3. By direct analogy with RPn, let

CPn = {1-dimensional complex subspaces of Cn+1}.
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Rather than proceeding via the quotient topology as in the case of RPn, we will use the pre-
vious Lemma to show that this is a smooth manifold of real dimension 2n. (These approaches

of course yield the same space.)

It is convenient to use charts of a slightly more general kind than above. Let ⟨⋅, ⋅⟩ denote
the Hermitian inner product on Cn+1 which is C-linear in the first factor and conjugate-linear

in the second factor. Given a unit vector w ∈ Cn+1, let

Uw = {ℓ ∈ CPn ∣ ℓ /⊂ w⊥}.

Clearly, if ℓ ∈ Uw then ⟨v,w⟩ ≠ 0 for all nonzero v ∈ ℓ.
Let Ûw = w⊥. This is an n-dimensional complex subspace of Cn+1, therefore a 2n-dimensional

real subspace, which can be identified with R2n using any choice of basis. This will be the

codomain of our coordinate chart.

We let

φw ([v]) =
v

⟨v,w⟩ −w,

which is a well-defined map. The inverse is given by

x↦ [x +w] .

So φw is a bijection with Cn, which is of course open, so (1) is satisfied. Given w,w′ ∈ Cn+1,

for x ∈ φw (Ûw ∩ Ûw′) , we have φ−1w (x) ∈ Uw′ , so ⟨x +w,w′⟩ ≠ 0. This is an open condition, so

(2) is satisfied. The transition map

x↦ x +w
⟨x +w,w′⟩ −w

′

is smooth, so (3) is satisfied.

Note that the charts Ui are simply the charts Uei for the coordinate basis vectors ei. So

the finite collection {Uei}n+1i=1 covers CPn, and (4) is satisfied.

Finally, to check condition (5) of Lemma 4.1, we note that for any two lines ℓ, ℓ′ ∈ CPn, it
is easy to construct a nonzero vector w ∈ (ℓ⊥)c ∩ (ℓ′⊥)c , so that ℓ and ℓ′ both lie in the chart

Uw. This guarantees (5).

Here is a famous example of a diffeomorphism.

Proposition 4.4. CP1 ≅ S2.

Proof. We can write down the following maps:

S2 ∖N → U2

(x, y, z) ↦ [x + iy,1 − z]

and

S2 ∖ S → U1

(x, y, z) ↦ [1 + z, x − iy] .

These are clearly smooth, and when composed with the coordinates on U1 and U2, agree with

the stereographic projections up to a reflection; so it is clear that both are diffeomorphisms.
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For (x, y, z) ∈ S2 with z ≠ ±1, we have

[x + iy,1 − z] = [(x + iy)(1 + z),1 − z2] = [1 + z, x
2 + y2
x + iy ] = [1 + z, x − iy] .

Therefore the two maps above coincide on S2 ∖ {N,S}, giving a well-defined global diffeo-

morphism. □

Remark 4.5. For n > 1, CPn is not a sphere. Intuitively, this is because

S2n = R2n ⊔ {pt},

whereas

CPn = Cn ⊔CPn−1,
so these are different ways of compactifying Euclidean space. Real projective space is another

compactification. The following example gives yet another.

Example 4.6. Generalizing the previous example, for K = R or C, we let

Grk(Kn) = {k-dimensional linear subspaces of Kn}.

We shall describe a family of charts making this into a smooth manifold of dimension k(n−k)
in the real case and 2k(n − k) in the complex case.

Given any (n − k)-dimensional subspace Q ⊂Kn, let1

UQ = {X ∈ Grk(Kn) ∣X ∩Q = {0}}.

We can make UQ into a coordinate chart as follows. Fix any P ∈ UQ and observe that

Kn = P ⊕Q. After changing basis, we may assume that P = Kk × {0} and Q = {0} ×Kn−k

are coordinate planes.

Now, because Kn = P ⊕ Q, any X ∈ UQ is the graph of a linear map from P to Q. In

particular, it is the span of a unique matrix n × k matrix of the form

(4.1)

⎛
⎜⎜⎜⎜
⎝

1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1

A

⎞
⎟⎟⎟⎟
⎠
,

where A is an (n − k) × k matrix. We take our chart to be

φQ ∶X ∈ UQ ↦ A ∈Mat
(n−k)×k
K .

Since X and A determine each-other uniquely, this is bijective, so (1) is satisfied.

Now let P ′,Q′ be another pair of complementary subspaces. Note that X ∈ UQ′∩UQ iff the

image of the projection from X to Q′ has full rank. Since rank is determined by nonvanishing

of minors, this is an open condition on the matrix (4.1), so (2) is satisfied.

To check smoothness of the transition map, note that by construction, the map φ−1Q takes

A′ ∈ Mat
(n−k)×k
K to the span of an n × k matrix which looks like (4.1) in a different basis.

1In Example 4.3, with this notation, we would have written Uw⊥ instead of Uw.
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Changing to the chosen basis for P and Q, we obtain a matrix whose coefficients depend

linearly on the entries of A′. We can write this matrix as

(B
C
) ,

where B = B(A′) is k × k and C = C(A′) is (n − k) × k, and both depend smoothly (indeed,

linearly) on A′.

Supposing that X ∈ UQ ∩ UQ′ , we must have X ∩Q = 0, so X and Q are complementary.

This means that B is invertible. We can multiply by B on the right without changing the

span, so

φ−1Q′(X) = Span(
B

C
) = Span(BB

−1

CB−1
) = Span( 1

CB−1
) .

We therefore have

φQ (φ−1Q′(A′)) = CB−1 ∈Mat
(n−k)×k
K .

This shows that the transition function is smooth on the overlap, so (3) is satisfied. Properties

(4) and (5) can be established in a similar way to the previous example. We of course have

Gr1(Kn) =KPn−1.

5. Smooth partitions of unity (Wed 9/18)

Today we will prove a basic lemma in the theory of (smooth) manifolds. Recall that the

support of a real- or complex-valued function f is defined by

supp f = {x ∈M ∣ f(x) ≠ 0}.
Definition 5.1. Let X = {Xα} be an open cover of a smooth manifold M. A smooth

partition of unity subordinate to X is a collection of smooth functions ψα (indexed by the

same set as X ) such that for each α ∶

(i) 0 ≤ ψα ≤ 1

(ii) suppψα ⊂Xα

(iii) The collection {suppψα} is locally finite

(iv) ∑αψα ≡ 1.

Notice that item (iv) makes sense in view of item (iii). In other words, for each x ∈M, the

sum in (iv) has only finitely many nonzero terms, so is well-defined without any analysis.

Definition 5.2. Let A ⊂ U ⊂M, with U open and A ⊂ U. A bump function H for the pair

A ⊂ U is a continuous function on M with:

● 0 ≤H(x) ≤ 1

● H(x) ≡ 1 for all x ∈ A
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● suppH ⊂ U.

Lemma 5.3. Let 0 < r1 < r2 < ∞. There exists a smooth bump function on Rn for the pair

Br1(0) ⊂ Br2(0).

Proof. Let

f(t) =
⎧⎪⎪⎨⎪⎪⎩

e−
1
t t > 0

0 t ≤ 0.

For t > 0, we have f ′(t) = 1
t2 e
− 1

t , which tends to zero as t ↘ 0, so f ′(t) is continuous on R.
Each higher derivative is again of the form p (1t ) e−

1
t , and so also tends to zero as t↘ 0. The

function f(t) is therefore smooth on R, with all derivatives vanishing on (−∞,0] , and with

0 < f(t) ≤ 1 for t > 0.
Now define

h(t) = f(r2 − t)
f(r2 − t) − f(t − r1)

.

One can check that this is a smooth bump function for (−∞, r1] ⊂ (−∞, r2) . Finally, for
x ∈ Rn, let

H(x) = h(∣x∣).

This is smooth for ∣x∣ > 0 by the chain rule, and since it is identically equal to one on a

neighborhood of the origin, is also smooth there. □

We also need the following definition, which could have been made earlier but only becomes

relevant now.

Definition 5.4. A regular coordinate ball B ⊂M is a coordinate ball centered at p ∈M
for which there exists another coordinate ball B′ centered at p with B ⋐ B′ ⋐ U ⊂M, where

U is the coordinate chart making these into coordinate balls. In other words, if φ is the

chart map for U, we have

φ(B) = Br1(0), φ(B′) = Br2(0), r1 < r2,

with Br2(0) ⋐ φ(U). This guarantees that φ(B̄) = Br1(0).
The proof of Proposition 2.2 in fact showed that we can always choose a countable basis

for M consisting of regular coordinate balls.

Theorem 5.5. Suppose M is a smooth manifold and X = {Xα} is an open cover. There

exists a smooth partition of unity {ψα} subordinate to X .

Proof. Recall that in the proof of paracompactness of M, Theorem 2.6, we in fact showed

that a countable locally finite refinement of X can be chosen from any basis. Let {Bi}∞i=1 be
a countable locally finite refinement consisting of regular coordinate balls. It is easy to see

from the definition of local finiteness (involving a neighborhood W ∋ x) that the collection

of closures {B̄i} is again locally finite (using the same neighborhood). Since the balls are
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regular, there exists a collection {B′i} and chart maps φi such that φi(B̄i) = Br1(0), and
φi(B′i) = Br2(0). For each i, let Hi be the bump function on Rn guaranteed by (5.3). Let

fi =
⎧⎪⎪⎨⎪⎪⎩

Hi ○ φi(x) x ∈ B′i
0 x ∈M ∖B′i.

Let

f(x) =
∞
∑
i=1
fi(x),

which is a locally finite sum, so gives a smooth positive function on M. Next, let

gi(x) =
fi(x)
f(x) .

These are each smooth, bounded between zero and one, and clearly satisfy

∑
i

gi ≡ 1.

Hence {gi} is a p.o.u. subordinate to {Bi}.
It remains to regroup and re-index to make the partition subordinate to the original cover

X . For each i, choose a(i) such that Bi ⊂Xa(i). Define

ψα = ∑
i∶a(i)=α

gi.

This clearly satisfies (i) and (iv) in the definition of p.o.u. Note that

suppψα = ∪i∶a(i)=αBi.

Since {B̄i} is locally finite, one can pass the closure to the inside, giving

suppψα = ∪i∶a(i)=αB̄i ⊂ Xα,

which is (ii). Also, since each gi appears only once in ψα, (iii) remains true. (Notice that

many of the ψα’s may be identically zero.) □

We can now do a few applications.

Proposition 5.6. Let A ⊂ U ⊂ M with A closed and U open. Then there exists a smooth

bump function for the pair A ⊂ U.

Proof. Take U0 = U,U1 =M ∖A. Let {ψ0, ψ1} be a p.o.u. subordinate to {U0, U1}. We have

ψ1 ≡ 0 on A, so ψ0 ≡ 1 on A. Also, by definition, suppψ0 ⊂ U0 = U. Hence ψ0 is the required

bump function. □

Remark 5.7. It is possible to choose ψ in the previous proposition such that ψ−1(1) = A,
i.e., the value 1 is taken on exactly on A (whereas ψ0 may be identically equal to one on

a larger set). This follows from Lee, Theorem 2.29, which is also relevant to one of your

homework problems.
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Definition 5.8. An exhaustion function for M is a continuous function on M such that

for each c ∈ R,
f−1 (−∞, c]

is compact. In particular, an exhaustion function gives a nice way to define an exhaustion

by compact sets Kn = f−1 (−∞, n] in the sense of Lemma 2.7.

Example 5.9. M = Rn, f(x) = ∣x∣2.

Proposition 5.10. Every smooth manifold admits a positive, smooth exhaustion function.

Proof. Let {Ui} be any countable, locally finite cover by precompact open sets, and {ψi} a
subordinate p.o.u. Define

f(x) =
∞
∑
i=1
iψi(x).

The sum is locally finite since the cover is. Moreover, we have

f−1 (−∞, c] ⊂ ∪⌈c⌉i=1Ui = ∪
⌈c⌉
i=1Ūi,

which is compact. The first inclusion is because if x /∈ Ui for i = 1, . . . , ⌈c⌉, then x ∈ Uj for

some j > c, which implies f(x) ≥ j > c. □
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Part 2. The tangent space

6. Definition(s) of the tangent space (Fri 9/20)

Given any open subset U ⊂M, we have constructed the ring of smooth functions C∞(U).
Also, given two smooth manifolds M and N, we can talk about smooth maps f ∶ M → N

(ones for which the pullback of any local coordinate on N is smooth on M). In particular,

a smooth path in M is just a smooth map

γ ∶ (−ε, ε) ⊂ R→M.

Supposing that γ(0) = x, we say that γ is a smooth path through x. (One can equally well

consider C1 paths.)

Question. What space does the derivative “γ′(0)” belong to?

Answer 1. Given any coordinate chart (U,φ) containing x, by shrinking ε if necessary, we

can assume that γ(−ε, ε) ⊂ U. We can then take the composition φ ○ γ ∶ (−ε, ε) → Rn, and

form the usual derivative

(φ ○ γ)′ (0) = lim
t→0

φ(γ(t)) − φ(x)
t

.

Note that we are using the vector-space structure of Rn to form the difference quotient, and

the topology on Rn to take the limit. So, from a smooth path in M and a coordinate chart,

we get a vector in Rn.

Given a different coordinate chart (V,ψ), the corresponding vectors in Rn are related by

the chain rule as follows:

(ψ ○ γ)′ (0) = (ψ ○ φ−1 ○ φ ○ γ)′ (0)
= d (ψ ○ φ−1)

φ(x) (φ ○ γ)
′ (0),

(6.1)

where d (ψ ○ φ−1)φ(x) is the usual derivative of a map from Rn → Rn. As one shows in

multivariable calculus, the matrix corresponding to this linear map is the so-called Jacobian,

which contains all the partial derivatives of the coordinate functions (see Example 6.1 below).

Now, to give the first definition of the tangent space at x, let {(Uα, φα)}α∈A be any smooth

atlas forM (which one could take to be maximal for convenience). Let Ax = {α ∈ A ∣ Uα ∋ x}.
Take one copy Rn

α of Rn for each α ∈ Ax. For any vα ∈ Rn
α and vβ ∈ Rn

β, declare vα ∼ vβ if and

only if

d (φβ ○ φ−1α )φα(x)
vα = vβ.

It’s easy to check that this is an equivalence relation, so we can define

T
(1)
x M ∶= ⊔α∈AxRn

α/ ∼ .

For each α, the map

vα ∈ Rn
α ↦ [vα] ∈ T

(1)
x M

is clearly a bijection, since [vα] ∩Rn
β consists of one element for each β ∈ Ax. Moreover, since

the derivative is a linear map, the identifications are all linear, so T
(1)
x M inherits the same

vector-space structure from each chart.
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Given a path γ(t) through x, we may let

γ′(0) = {((φα ○ γ)′ (0))α ∣ α ∈ Ax} ∈ T
(1)
x M,

which is a well-defined equivalence class by (6.1).

Example 6.1. Let {xj} be a system of local coordinates on Uα and {yi} a system of local

coordinates on Uβ, both containing x. The transition map can be written as

φβ ○ φ−1α ∶ (x1, . . . , xn)T ↦ (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn))
T
.

The derivative of γ is given in the Uβ coordinates by

γ′(0) =
⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

dy1(γ(t))
dt

⋮
dyn(γ(t))

dt

⎞
⎟⎟
⎠
β

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

∑j dx
j(γ(t))
dt

∂y1

∂xj

⋮
∑j dx

j(γ(t))
dt

∂yn

∂xj

⎞
⎟⎟
⎠
β

⎤⎥⎥⎥⎥⎥⎥⎦
,

where we have applied the chain rule on each coordinate function. The vector on the inside

is precisely the Jacobian matrix

( ∂y
i

∂xj
)
n

i,j=1
=
⎛
⎜⎜
⎝

∂y1

∂x1 ⋯
∂y1

∂xn

⋮ ⋮
∂yn

∂x1 ⋯
∂yn

∂xn

⎞
⎟⎟
⎠

multiplied by the derivative in the Uα chart,

⎛
⎜⎜
⎝

dx1(γ(t))
dt

⋮
dxn(γ(t))

dt

⎞
⎟⎟
⎠
α

.

This shows that that d (φβ ○ φ−1α )φα(x) indeed acts by multiplication by the Jacobian matrix.

Answer 2. Fix a path γ as above. Given any smooth function f ∈ C∞(M), we can form

the composition

f ○ γ ∶ (−ε, ε) → R
and take its derivative at t = 0 ∶

(f ○ γ)′(0) ∈ R.
This gives us a linear functional on C∞(M), i.e. a linear map to the real numbers, which

we denote by

wγ ∶ C∞(M) → R
f ↦ (f ○ γ)′(0).

This further satisfies the Leibniz rule

(6.2) wγ(f ⋅ g) = wγ(f)g(x) + f(x)wγ(g).
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Let’s recall the proof. Since γ(0) = x, we have:

wγ(f ⋅ g) = lim
t→0

f(γ(t))g(γ(t)) − f(x)g(x)
t

= lim
t→0

f(γ(t))g(γ(t)) − f(x)g(γ(t)) + f(x)g(γ(t)) − f(x)g(x)
t

= lim
t→0

(f(γ(t)) − f(x)) g(γ(t)) + f(x) (g(γ(t)) − g(x))
t

= wγ(f)g(x) + f(x)wγ(g).

(6.3)

A linear functional on C∞(M) that also satisfies (6.2) is called a derivation at x. For our

second definition, we take

T
(2)
x M ∶= space of all derivations at x.

As explained above, the path γ defines an element wγ of this space which we can think

of as γ′(0). Also notice that since one can add and scalar multiply derivations, T
(2)
x M is

automatically a vector space.

Example 6.2. Fix coordinates {xi} as before. Define the derivation

∂

∂xi
∶ g ↦ ∂ (g ○ φ−1))

∂xi
= lim
t→0

g(x1, . . . , xi + t, . . . , xn) − g(x1, . . . , xn)
t

.

This is checked to be a derivation as in (6.3). In fact, letting γi(t) be the path such that

φ (γi(t)) = (x1, . . . , xi + t, . . . , xn)T ,
we have

∂

∂xi
= wγi

by definition. Moreover, by the calculation in the last example, for any path γ, we have

wγ = ∑
j

dxj(γ(t))
dt

∂

∂xj
.

Hence the elements ∂
∂xi

span the image of wγ inside the space of derivations T
(2)
x M. Last,

given another coordinate system {yj}, we have

∂

∂xj
= ∑

i

∂yi

∂xj
∂

∂yi

by the chain rule.

Answer 3. Notice that the derivative of a function f along the path γ at t = 0 only depends

on the values of f near x. This motivates the following definition, which leads to our third

answer.

The ring of germs of smooth functions at x is defined to be

C∞x (M) = {(U, f) ∣ f ∈ C∞(U), U ∋ x}/ ∼,
where (U, f) ∼ (V, y) iff there exists x ∈W ⊂ U ∩ V such that

f ∣W = g∣W .
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The path γ clearly gives a well-defined derivation wγ on germs, given by

wγ ([(U, f)]) = (f ○ γ)′ (0) ∈ R.
We will henceforth omit the set U and brackets and simply denote a germ [(U, f)] by f.

Now let

mx = {f ∈ C∞x (M) ∣ f(x) = 0}.
This is an ideal in C∞x (M)—in fact, as you will show on homework, it is the unique maximal

ideal. So C∞x (M) is a local ring...hence the term!

The derivation wγ on C∞x (M) restricts (uniquely) to a linear functional on mx. Since it is

a derivation, if f(x) = 0 = g(x) then wγ(f ⋅ g) = 0. Hence wγ restricts to zero on the square

ideal m2
x. The image of wγ therefore makes sense in

(mx/m2
x)
∗ =∶ T (3)x M.

Theorem 6.3. The tangent spaces T
(i)
x M are all canonically isomorphic. In particular, the

tangent space at x, denoted henceforth by TxM, is a real vector space of dimension n.

You will prove this on your homework. The only tricky part is to show that there are no

“extra” derivations beyond those spanned by ∂
∂xi

in coordinates. You may make use of the

following result, which establishes the case of a ball in Rn.

Lemma 6.4. Let w be a derivation at the origin on Br(0) ⊂ Rn.2 If f ∈ C∞(Br(0)) is such

that ∂f
∂xi
∣
0
= 0 for i = 1, . . . , n, then w(f) = 0.

Proof. This can be seen using the following version of Taylor’s theorem.

For a twice-differentiable function g(t) on [0,1] ⊂ R, we have

g(1) − g(0) = ∫
1

0
g′(t)dt.

We integrate by parts using the antiderivative (t − 1) of 1. This gives

g(1) − g(0) = (t − 1)g(t)∣10 − ∫
1

0
(t − 1)g′′(t)dt

= g′(0) + ∫
1

0
(1 − t)g′′(t)dt.

Now, given a C2 function f on a neighborhood of 0 ∈ Rn, and x such that the line from 0 to

x is in the domain, we can define

g(t) = f(t ⋅ x)
where t scalar-multiplies the vector x. By the chain rule, we have

g′(t) = ∑
i

xi
∂f

∂xi
(t ⋅ x)

and

g′′(t) = ∑
i,j

xixj
∂f

∂xi∂xj
(t ⋅ x).

2This was stated in class as a statement about derivations on the ring of germs, but the proof works for

the ring of smooth functions on any domain which is star-shaped about the origin.
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Substituting into the above formula, we obtain

(6.4) f(x) = f(0) +∑
i

xi
∂f

∂xi
+∑
i,j

xixj ∫
1

0
(1 − t) ∂f

∂xi∂xj
(t ⋅ x)dt.

We can use this formula to prove the Lemma. First of all, note that any derivation w must

vanish on constants, because

w(1) = w(12) = w(1) ⋅ 1 + 1 ⋅w(1) = 2w(1).
Rearranging, we have w(1) = 0, whence w(c) = c ⋅ w(1) = 0 for any constant c as claimed.

So w vanishes on the first term on the RHS of (6.4). It vanishes on the second term by

assumption. For any f, g ∈mx and h ∈ C∞(Br(0)), we must have w(fgh) = 0 by the Leibniz

rule. Since the third term is a sum of smooth functions of this form, w also vanishes on it.

Hence w(f) = 0 as claimed. □

7. Derivative of a function, cotangent space, derivative of a map (Mon

9/23)

Last time we gave three equivalent definitions of the tangent space TxM, motivated by the

desire to define the derivative of γ′(0) of a path through x. There is also a fourth definition,

which is even more natural than the others.

Answer 4. Let

T
(4)
x M

denote the set of equivalence classes of smooth paths through x under the relation:

γ1 ∼ γ2⇔ (f ○ γ1)′ (0) = (f ○ γ2)′ (0) ∀ f ∈ C∞(M).

You will also show on homework that T
(4)
x M is in canonical bijection with the other three.

With this definition, we can simply take

γ′(0) = [γ] ∈ T (4)x M.

The only reason for not including T
(4)
x M last time is that it does not obviously have the

structure of a vector space, while the others do.

Question. Let f be a smooth function on a neighborhood of x. What is the derivative of f

at x?

Answer. Given v ∈ TxM we have v = γ′(0) for some path γ through x. Then the function f

defines a map

v ↦ (f ○ γ)′(0) ∈ R,
which is independent of the path γ for which γ′(0) = v (in T

(4)
x M, this is just by definition!).

We call this map

df ∈ (TxM)∗ =∶ T ∗xM,

where the dual space T ∗xM is called the cotangent space of x at M. Since this is the dual

of TxM, it also has dimension n.
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Example 7.1. Let xi be a coordinate system. By definition, the differential of xi is given

by

dxi ( ∂

∂xj
) = ∂x

i

∂xj
= δij.

Therefore {dxi}ni=1 is the dual basis of { ∂
∂xi
}n
i=1 .

Given a smooth function f, we have

df ( ∂
∂xi
) = ∂f

∂xi
,

which implies

(7.1) df = Σj
∂f

∂xj
dxj.

In particular, for another coordinate system yj, we have

dyi = Σj
∂yi

∂xj
dxj,

so

(7.2) df = Σi
∂f

∂yi
dyi = Σi,j

∂f

∂yi
∂yi

∂xj
dxj.

Since the coefficients of dxj in (7.1) and (7.2) must be equal, we have

(7.3)
∂f

∂xj
= ∑

i

∂f

∂yi
∂yi

∂xj
,

which agrees with the chain rule.

Question. What is the derivative of a smooth map F ∶M → N?

In the case of M = Rm,N = Rn, recall the definition

dFp = L <=> lim
x→p

F (x) − F (p) −L(x − p)
∣x − p∣ = 0.

By considering this limit along the xj-axes, one proves that L must be the Jacobian matrix

of partial derivatives: ( ∂yi∂xj
) . Of course, we could define the derivative of a general smooth

map F by pre/post-composing with coordinate charts and showing that the resulting map

is well-defined on equivalence classes, per definition T
(1)
x M. But that would not be very

satisfying. It is easiest to define dFp by reference to the fourth definition:

dFx ∶ T (4)x M → T
(4)
x N

[γ] ↦ [F ○ γ].
(7.4)

Since F is defined locally by the smooth component functions yi ○ F (x), it is obvious that
this map is well-defined.

The derivative of F is even-more-obviously-well-defined at the level of derivations:

dFx ∶ T (2)x M → T
(2)
x N

w ↦ (g ↦ w(g ○ F )).



MATH 761: DIFFERENTIABLE MANIFOLDS (UW-MADISON, FALL 2024) 27

Here one just has to check that the pushforward of a derivation at x is a derivation at F (y),
i.e. the Leibniz rule still holds. That can be done in two lines (as we did in class).

The derivative dFx is sometimes denoted by F∗ and called the “pushforward.” This is for

symmetry with the “pullback” map on cotangent vectors:

F ∗ ∶ T ∗F (x)N → T ∗xM

α ↦ (v ↦ α(dFx(v))) .

Note that F ∗ is simply the adjoint of dFx = F∗.
Example 7.2. Let {xj} be local coordinates on M near x and {yj} be local coordinates on
N near f(x). After pre/post-composing with the charts, we can write

F (x) =
⎛
⎜
⎝

y1(x1, . . . , xm)
. . .

yn(x1, . . . , xm)

⎞
⎟
⎠
.

Then

dFx (
∂

∂xj
) (yi) = ∂y

i

∂xj

and

dFx (
∂

∂xj
) (f) = ∂f

∂xj
= ∑

i

∂yi

∂xj
∂f

∂yi
.

We can therefore write

dFx (
∂

∂xj
) = ∑

i

∂yi

∂xj
∂

∂yi

and

F ∗dyi = ∑
j

∂yi

∂xj
dxj.

The main goal of Part 3 will be to show that if dFx is injective, surjective, or bijective,

then F is injective, surjective, or bijective, respectively, on a neighborhood of x. Maps with

these properties are respectively called immersions, submersions, and local diffeomorphisms.

8. The tangent bundle and vector fields (Mon 9/23)

Question. How to make sense of a “smoothly varying family of tangent vectors?” I.e. a

collection

X = {Xx ∈ TxM}x∈U
for which Xx “varies smoothly.”

Answer 1. Such a collection can be considered smooth if

Xx = ∑
i

X i(x) ∂
∂xi

for smooth functions X i(x) in local coordinates.
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Answer 2. Define the tangent bundle

(8.1) TM = ⊔
x∈M

TxM

as a set. We’ll employ the smooth manifold chart lemma to give smooth charts canonically

attached to smooth charts on M, in such a way that the projection map

π ∶ TM →M

is smooth.

Proposition 8.1. For any smooth n-manifold M; the tangent bundle TM has a natural

topology and smooth structure that make it into a 2n-dimensional smooth manifold. With

respect to this structure, the projection π ∶ TM →M is smooth.

Proof. We begin by defining the maps that will become our smooth charts. Given any

smooth chart (U,φ) for M , note that π−1(U) ⊂ TM is the set of all tangent vectors to M

at all points of U . Let (x1(p), ..., xn(p)) denote the coordinate functions of φ, and define a

map φ̃ ∶ π−1(U) → R2n by

φ̃(∑
i

vi
∂

∂xi
∣
p

) = (x1(p), . . . , xn(p), v1, . . . , vn).

Its image set is φ(U) ×Rn, which is an open subset of R2n. It is a bijection onto its image,

because its inverse can be written:

φ̃−1((x1(p), ..., xn(p), v1, ..., vn) = ∑
i

vi
∂

∂xi
∣ϕ−1 .

Now suppose we are given two smooth charts (U,ϕ) and (V,ψ) for M , and let (π−1(U), φ̃,
(π−1(V ), ψ̃ be the corresponding charts on TM . The sets:

φ̃(π−1(U) ∩ π−1(V )) = φ(U ∩ V ) ×Rn

and

ψ̃(π−1(U) ∩ π−1(V )) = ψ(U ∩ V ) ×Rn

are open in Rn, and the transition map ψ̃ ○ φ̃−1 ∶ φ(U ∩ V ) × Rn → ψ(U ∩ V ) × Rn can be

written explicitly as:

(8.2) ψ̃ ○ φ̃−1(x1, ..., xn, v1, ..., vn) = (ψ(φ−1(x1, . . . , xn)), dφ−1(x) (ψ ○ φ−1) (v1, . . . , vn)) ,

which is smooth.

Choosing a countable cover {Ui} of M by smooth coordinate domains, we obtain a count-

able cover of TM by coordinate domains {π−1(U)} satisfying conditions (1) − (4) of the
smooth manifold chart lemma. To check the Hausdorff condition, just note that any two

points in the same fiber of π lie in one chart, while if (p, v) and (q,w) lie in different fibers,

there exist disjoint, smooth coordinate domains U , V for M such that p ∈ U and q ∈ V , and

then π−1(U) and π−1(V ) are disjoint coordinate neighborhoods containing (p, v) and (q,w),
respectively. To see that π is smooth, note that with respect to the charts (U,ϕ) for M and

(π−1, ϕ̃) for TM , its coordinate representation is π(x, v) = x □



MATH 761: DIFFERENTIABLE MANIFOLDS (UW-MADISON, FALL 2024) 29

Definition 8.2. A smooth vector field over U , X ∈ X(U), is a smooth section of

π ∶ U ↦ TM,

i.e., a smooth map such that

π ○X = IdU ,
or in other words X(x) ∈ TxM for all x ∈ U.
Note that by lettingX act on functions at each point x ∈ U, X ∈ X(U) defines a derivation:

X ∶ C∞(U) → C∞(U)
f ↦X(f) = df(X),

i.e. a linear map satisfying the Leibniz rule

X(fg) =X(f)g + fX(g).

Question. What is the derivative of a vector field?

This question will be partially addressed in Part 4 and more fully addressed in Math 765.
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Part 3. Immersions, submersions, submanifolds

9. The inverse function theorem (Wed 9/25)

As mentioned last week, the goal is to go from information on the derivative dF at a point

(injectivity, surjectivity, bijectivity) to the same information on F in a neighborhood. We

start with bijectivity, as it turns out that the other cases can be reduced to this one.

Theorem 9.1 (Inverse function theorem). Let F ∶ M → N be a smooth map and p ∈ M.

Suppose dFp ∶ TpM → TF (p)N is an isomorphism. Then there exist neighborhoods U0 ∋ p and

V0 ∋ F (p) such that the restriction

F ∣U0
∶ U0 → V0

is a diffeomorphism.

Proof. Since the statement is local, without loss of generality, we can replace M by a coor-

dinate neighborhood U centered at p and N by a coordinate neighborhood V centered at

F (p) ∈ N. The statement is clearly true if and only if it is true after pre/post composing

with the coordinate maps. So we may assume without loss of generality that U and V are

subsets of Rn, with p = 0 = F (p). (Since dFp is an isomorphism, the tangent spaces are of

the same dimension, so M and N are of the same dimension n.)

Let

L = (dF )0.
Given y ∈ V sufficiently close to zero, we shall use Newton’s method to find x = F −1(y).
This means that we “adjust” a candidate solution, x, by following the linear approximation

until it hits the value y. The adjusted x, which we call Ty(x), is determined by

L (Ty(x) − x) = y − F (x)
and

Ty(x) = x +L−1 (y − F (x)) .
Here we have used the assumption that L is an isomorphism in order to apply the inverse

L−1 to both sides.

Notice that clearly we have

y = F (x) ⇔ Ty(x) = x.
The problem of solving F (x) = y is therefore reduced to finding a fixed point of the map Ty.

Lemma 9.2 (Contraction mapping principle). Suppose that X is a nonempty complete

metric space and T ∶X →X satisfies

d(T (x), T (y)) ≤ λd(x, y)
for all x, y ∈X and some constant λ < 1. Then there exists a unique fixed point of T on X.

Proof. Exercise (you should have seen this before). □

We will apply the contraction mapping principle with X = Bδ(0), the closure of a small

ball around the origin, where δ is chosen as follows. We have

F (x) = Lx +G(x)
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for a “remainder” function G(x) which is again smooth with dG0 = 0. Given ε > 0, there

exists δ > 0 such that

(9.1) ∣dGx∣ < ε
for all ∣x∣ ≤ δ. Here we are taking the operator norm of a linear map:

(9.2) ∣A∣ ∶= sup
∣v∣=1
∣Av∣.

We now let δ > 0 be such that (9.1) is satisfied with

ε = 1

2∣L−1∣ .

By the mean-value theorem, (9.1) implies

(9.3) ∣G(x′) −G(x)∣ ≤ 1

2∣L−1∣ ∣x − x
′∣

for all ∣x∣ ≤ δ, as well as simply

(9.4) G(x) ≤ 1

2∣L−1∣ ∣x∣.

Assuming also that

(9.5) ∣y∣ < δ

2∣L−1∣ ,

we have

∣Ty(x)∣ = ∣x +L−1 (y −Lx −G(x)) ∣
= ∣L−1(y −G(x))∣
≤ ∣L−1∣ (∣y∣ + ε∣x∣)

< δ
2
+ δ
2
= δ,

where we have applied (9.4-9.5). This shows that Ty restricts to a map

Ty ∶ Bδ(0) → Bδ(0) ⊂ Bδ(0).

We claim that it is a contraction on Bδ(0). Indeed, from (9.3), we have

∣Ty(x) − Ty(x′)∣ = ∣x − x′ +L−1 (y −Lx −G(x) − y +Lx +G(x)) ∣
= ∣L−1 (G(x) −G(x′)) ∣
≤ ∣L−1∣∣G(x) −G(x′)∣

≤ 1

2
∣x − x′∣.

We conclude from the Lemma that given y ∈ B δ
2∣L−1 ∣

=∶ V0, there exists a unique x ∈ Bδ(0)
such that F (x) = y. (A priori, x only lies in the closure Bδ(0), but since it solves Ty(x) = x
and the image of Ty is contained in Bδ(0), the same is true of x.) Letting

U0 ∶= F −1(V0) ∩Bδ(0),
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we have shown that F ∶ U0 → V0 has an inverse map F −1.

It remains to check continuity and smoothness of F −1. Write y = F (x) and y′ = F (x′). For
continuity, we compute

∣y′ − y∣ = ∣Lx′ +G(x′) −Lx −G(x)∣
≥ ∣L(x − x′)∣ − ∣G(x′) −G(x)∣

≥ 1

∣L−1∣ ∣x
′ − x∣ − 1

2∣L−1∣ ∣x
′ − x∣

= 1

2∣L−1∣ ∣x
′ − x∣.

(9.6)

Here we have used (9.3) and the fact that ∣L(x−x′)∣ ≥ 1
∣L−1∣ ∣x−x′∣ (exercise). This expression

certainly implies that x′ → x as y′ → y, so F −1 is continuous.

Next, write Lx = dFx. After shrinking δ, we can assume that Lx is invertible for all x ∈ U0.

We claim that for x ∈ U0, and y = F (x), we have

(9.7) (dF −1)
y
= L−1x .

We have

lim
y′→y

F −1(y′) − F −1(y) −L−1x (y′ − y)
∣y′ − y∣ = lim

y′→y
L−1x

Lx(x′ − x) − (y′ − y)
∣y′ − y∣

= lim
x′→x
−∣x

′ − x∣
∣y′ − y∣L

−1
x

F (x′) − F (x) −Lx(x′ − x)
∣x′ − x∣ .

It follows from (9.6) that ∣x
′−x∣
∣y′−y∣ is bounded, and the rest of the expression tends to zero by

definition of Lx. Therefore the limit is zero, which proves (9.8).

To see that the first derivative is continuous, we rewrite (9.8) as

(9.8) (dF −1)
y
= (LF−1(y))

−1
.

The function (Lx)−1 is smooth in x near zero, since it is the inverse of a smooth matrix-

valued function. Since F −1(y) is C0, this implies that (LF−1(y))
−1

is continuous in y. But

this implies that the LHS of (9.8) is continuous in y; in other words, F −1(y) is C1.

Now, the fact that F −1(y) is C1 implies that (LF−1(y))
−1

is also C1, since a composition of

a smooth and a C1 function is C1. But then the LHS of (9.8) is C1, which is to say, F −1(y)
is C2. Continuing in this way, we obtain continuity of all higher derivatives of F −1(y). □

10. Local diffeomorphisms and covering maps (Wed 9/25)

Definition/Lemma 10.1. A smooth map F ∶ M → N is called a local diffeomorphism

if dFx is an isomorphism for all x ∈ M. In particular, for x ∈ M, there exists U0 ∋ x and

V0 ∋ F (x) such that

F ∣U0
∶ U0 → V0

is a diffeomorphism.
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This definition has a close relationship with the following topological one.

Definition 10.2. A map π ∶X → Y between two topological spaces is called a (topological)

covering map is every point q ∈ Y has a neighborhood V that is evenly covered, i.e.

π−1(V ) = ⊔Ṽα
for some disjoint open sets Ṽα ⊂X such that π∣Ṽα ∶ Ṽα → V is a homeomorphism for each α.

Example 10.3. Let k ∈ N ∪ {∞}. Consider the projection map

π ∶ R/2πkZ→ R/2πZ = S1

[θ] ↦ [θ] .
Not only is this a local diffeomorphism (for tautological reasons), it is a k-to-1 covering map.

Example 10.4. Consider the projection map π ∶ Sn → RPn = Sn/ ± 1. This is a local

diffeomorphism, since the hemisphere charts U±i are each mapped diffeomorphically onto the

standard coordinate chart Ui. This also shows immediately that π is a 2-to-1 covering map.

Example 10.5. To make a stupid example of a local diffeomorphism that is not a covering

map, take M = (0,1) ⊔ (−1,1) , N = (−1,1) , and π the obvious map. Then 0 is not evenly

covered.

Here are some simple theorems about local diffeomorphisms versus covering maps that we

did not get to discuss in class, but which may come up again later. The first gives a criterion

for when a local diffeomorphism is a covering map.

Proposition 10.6 (Lee, Prop 4.46). Let F ∶ M → N be a local diffeomorphism which is

proper (i.e. the inverse image of compact subset is compact), and assume N is connected.

Then N is a covering map.

Proof. The main point is to observe that the fiber over any point is a discrete set, by the

local diffeomorphism property; but this set must be compact by properness, and a discrete

set is compact if and only if it is finite. So, to obtain a neighborhood V which is evenly

covered, one need only take the intersection of finitely many open sets on which F is a local

diffeomorphism. □

The second one is about when a topological covering map can be promoted to a local

diffeomorphism.

Proposition 10.7 (Lee, Prop. 4.40). Suppose that π ∶ X → N is a covering map, with

N a smooth manifold. There exists a unique smooth structure on X such that π is a local

diffeomorphism.

Proof. One can endow X with an atlas consisting of connected components of the preimages

of evenly covered coordinate balls in N. These will overlap only if their images in N overlap,

in which case the transition functions are exactly the same. □

One consequence is that the universal cover of a smooth manifold is naturally a smooth

manifold.

There is another one on your homework showing that given a covering action by diffeo-

morphisms, you can “descend” the smooth structure to the quotient in a unique way:
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Proposition 10.8. Suppose that a group G acts properly discontinuously3 by diffeomor-

phisms on a smooth manifold M. Then M/G has a unique smooth structure such that the

projection π ∶M →M/G is a local diffeomorphism.

Proof. Homework 4. □

For example, this gives you another way to define the standard smooth structure on RPn.

11. Immersions and embeddings (Fri 9/27)

11.1. Immersions. A smooth map F ∶M → N is an immersion if dFx is injective for all

x ∈M. (Note that necessarily m = dim(M) ≥ n = dim(N).)
Remark 11.1. dF being injective is an open condition, meaning that if dFp is injective then

there exists an open neighborhood U ∋ p such that dFx is injective for all x ∈ U. There are

many ways to see this. For instance, by Gaussian elimination, the matrix representing dFp
is injective if and only if the determinant of an m ×m minor does not vanish, which is an

open condition since the determinant is a polynomial in the coefficients. More geometrically,

one can observe that since the n-sphere is compact, dFp is injective if and only if

inf
∣v∣=1
∣dFp(v)∣ > 0,

and by uniform continuity, this remains true after perturbing dFp slightly (exercise).

In the proof of the inverse function theorem (before 9.8) we used the case m = n of this

fact, which is easier to see since it’s just nonvanishing of the determinant.

This observation also follows from the next result.

Proposition 11.2. Suppose dFp is injective. There exists a coordinate system on N near

F (p) such that F takes the form

F (x1, . . . , xm) = (x1, . . . , xm,
n−m
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0).

Proof. We can suppose without loss of generality that the first m ×m minor of dFp is non-

singular:

dFp =
⎛
⎜
⎝

nonsingular
©∗
∗

⎞
⎟
⎠
.

For, we know that m of the rows must be linearly independent, so we can simply permute

the coordinates on N so that these rows become the first rows of dFp.

Now, by shrinking U, we may suppose that F (U) ⋐ V, and let ε > 0 be such that

d(F (U), V c) > ε. We can then define a map

F̄ ∶ U ×Bn−m
ε (0) → V ⊂ Rn

(x, y) ↦ F (x) + (0, y).
3An action G↻ M is called properly discontinuous if each p ∈ M has a neighborhood U ∋ p such that

U ∩ g(U) = ∅ for g ≠ e ∈ G.
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Here we are using the addition operation on Rn; written out fully, the above expression

means

F̄ (x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

F 1(x1, . . . , xm)
⋮

Fm(x1, . . . xm)
Fm+1(x1, . . . , xm) + y1

⋮
F n(x1, . . . , xm) + yn−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The derivative of F̄ is a matrix of the form

dF̄p = (
∗ 0

∗ 1
) ,

where the left part is unchanged. From the form of dF̄p, it is easy to show that the columns

of dF̄p are linearly independent. Since this is an n×n matrix, it is invertible. By the inverse

function theorem, there exists an inverse

F̄ −1 ∶ V0 → U0 ⊂ U ×Bε(0) ⊂ Rn

which is also a diffeomorphism. As our new coordinate chart, defined on V0 ⊂ N, we take

ψ ∶= F̄ −1 ∶ V0 → U0 =∶ V̂0.
To see that this does the trick note that since F̄ −1 ○ F̄ = Id, we have

(x, y) = ψ(F̄ (x, y)) ∀(x, y) ∈ V0.
Taking y = 0, we have

(x,0) = ψ(F̄ (x,0))
But from the definition of F̄, we have F̄ (x,0) = F (x). So we obtain

(x,0) = (ψ ○ F ) (x),
which is just the desired expression. □

11.2. Embeddings. An immersion F ∶ M → N is called an embedding if it is a homeo-

morphism onto its image.

Remark 11.3. The following is a necessary and sufficient condition for a continuous map

from a T1 space to be a homeomorphism onto its image: for every p ∈M and neighborhood

U ∋ p, there exists a neighborhood V ∋ F (p) such that the inverse image F −1(V ) ⊂ U.
Example 11.4 (Immersion, not injective).

t↦ (1
2
t + cos t, sin t) .

The image is a doodle crossing itself once per cycle.

Example 11.5 (Homeomorphism onto its image, not an immersion).

t↦ (t + cos t, sin t) .

This is one-to-one but has a “cusp” each cycle.
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Example 11.6 (Injective immersion, not homeomorphism onto its image). The “figure

eight” in R2 can be parametrized by R in such a way that F (0) = (0,0) but also the limit as

x → ±∞ is zero. Letting U be any bounded interval containing 0 ∈ R, the inverse image of

any open set V ∋ (0,0) contains points near ±∞, so is not contained in U. By Remark 11.3,

this is not an embedding.

Remark 11.7. Supposing that a map is an injective immersion, Lee Proposition 4.22 gives

several handy criteria for the map to be an embedding: for instance, if M is compact then

this has to be the case, because a continuous map from a compact space to a Hausdorff space

must be closed, so its inverse satisfies the “closed set” definition of continuity.

Example 11.8 (Embedding). Here is a standard way to embed the torus T 2 into R3 ∶

(11.1) (θ, ϕ) ↦ ((2 + cosϕ) cos θ, (2 + sinϕ) sin θ, sinϕ) .

We have

∂F

∂θ
=
⎛
⎜
⎝

−(2 + cosϕ) sin θ
(2 + cosϕ) cos θ

0

⎞
⎟
⎠

and

∂F

∂ϕ
=
⎛
⎜
⎝

− sinϕ cos θ
− sinϕ sin θ

cosϕ

⎞
⎟
⎠
.

So the Jacobian matrix is

⎛
⎜
⎝

−(2 + cosϕ) sin θ − sinϕ cos θ
(2 + cosϕ) cos θ − sinϕ sin θ

0 cosϕ

⎞
⎟
⎠
.

The determinant of the top 2 × 2 minor is

(2 + cosϕ) sinϕ (sin2 θ + cos2 θ) = (2 + cosϕ) sinϕ.

This is nonzero as long as ϕ ≠ 0, π + 2πZ, so we are done apart from those cases. For

ϕ = 0, π + 2πZ, the Jacobian is

⎛
⎜
⎝

−(2 ± 1) sin θ 0

(2 ± 1) cos θ 0

0 ±1

⎞
⎟
⎠
.

The columns are linearly independent for any value of θ, so we are done.

Remark 11.9. Note that in the last example we were slightly casual in that we treated θ

and ϕ as coordinates on T 2 although they are not globally well-defined. Really, what we

showed is that the map R2 → R3 defined by the formula (11.1) is an immersion. This does

of course descend to a map from the torus T 2 = R2/2πZ2, and the map is smooth because

the projection R2 → T 2 is a local diffeomorphism—for the general statement of this smooth

descent property, see Corollary 12.8 in the next lecture.



MATH 761: DIFFERENTIABLE MANIFOLDS (UW-MADISON, FALL 2024) 37

12. Submersions and the constant rank theorem (Fri 9/27-Mon 9/30)

12.1. Submersions. A smooth map F ∶M → N (m ≥ n) is called a submersion if dFp is

surjective for all p ∈M.

Remark 12.1. Being surjective is also an open condition on a linear map. This can also

be seen by considering minors / using Gaussian elimination. Alternatively, one can observe

that dFp = F∗ ∶ TpM → TF (p)N is injective if and only if F ∗ ∶ T ∗
F (p)N → T ∗pM is injective.

Proposition 12.2. Suppose dFp is surjective. There exist coordinates on M near p such

that F takes the form

F (x1, . . . , xn, y1, . . . , ym−n) = (x1, . . . , xn).

Remark 12.3. As we shall see from the proof, one only has to change n of the variables

on the domain and can leave m − n of them unchanged (the ones that will be labeled as

y1, . . . , ym−n). See the corollary for a statement to this effect.

Proof. Since the theorem is local, take open sets p ∈ U ⊂M and F (p) ∈ V ⊂ N . By permuting

the coordinates on the domain, we may assume that

dFp =
n m−n
( ∗ ∗ )

where the left n × n block is nonsingular. Now, consider the map

F̄ ∶ U → V ×Rm−n

(x, y) ↦ (F (x, y), y).
We have

dF̄p = (
∗ ∗
0 Im−n

)

where the left part is the same. As before, it is easy to see that the rows are linearly

independent, so this is invertible. The inverse function theorem guarantees the existence of

an inverse F̄ −1 on a smaller domain, which we write in the form

F̄ −1(x, y) = (A(x, y),B(x, y))
for smooth functions A(x, y) ∈ Rn and B(x, y) ∈ Rm−n. For any point (x, y), we have

(x, y) = F̄ (F̄ −1(x, y))
= F̄ (A(x, y),B(x, y)).

Comparing both sides, we see that B(x, y) = y, so in fact we have

(x, y) = F̄ (A(x, y), y)
= (F (A(x, y)), y), y),

by definition F̄. We therefore have

x = F (A(x, y), y).
Take new coordinates on U0 ⊂ U ⊂M given by φ(x, y) ∶ (A(x, y), y) ∈ Rm. We then have

(F ○ φ)(x, y) = F (A(x, y), y) = x,
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as desired. □

As a corollary of the proof, we have:

Corollary 12.4 (Classical Implicit Function Theorem). Suppose we have a smooth function

F ∶ U × V ⊂ Rn × Rm−n → Rn with F (0) = 0 and let (x, y) = (x1,⋯, xn, y1,⋯, ym−n) and

z = F (x, y). Suppose that the matrix of partials

( ∂z
i

∂xj
∣
0

)
n

i,j=1

is nonsingular. Then for each z sufficiently small, there exists a smooth function ϕz(y) such
that

F (ϕz(y), y) = z.

Proof. This follows by letting φz(y) = A(y, z) in the previous proof. □

Remark 12.5. It is good to try and draw a picture of this statement (as we did in class)

and think about how to prove it directly using Newton’s method.

12.2. Examples of submersions.

● Any local diffeomorphism is a submersion with m = n, and vice-versa. For instance

any smooth covering map, e.g. our favorites Rn → Rn/Zn = T 2 and Sn → Sn/ ± 1 =
RPn.

● Let K = R or C. The canonical projection

π ∶Kn+1 ∖ {0} →KPn

is a submersion (homework).

● Let π0 be the restriction of π to the unit sphere in Kn+1 ∖ {0}. In the case K = R,
the restriction is a local diffeomorphism, as we know. In the case K = C, you will

prove on your homework that the differential is still surjective after restriction to

S2n+1 ⊂ Cn+1, so remains a submersion.

Notice that the fiber over each point is a circle: given X = (X1, . . . ,Xn+1) ∈ S2n+1 ⊂
Cn+1, the fiber π−10 [X] over the line [X] =∈ CPn is:

π−1 [X1, . . . ,Xn+1] = {(λX1, . . . , λXn+1) ∣ λ ∈ C, ∣λ∣ = 1}.

So the fibers are all diffeomorphic. This turns out to be a general property of sub-

mersions from compact to connected manifolds.

This example is called the Hopf fibration and is usually represented by a diagram:

S1 → S2n+1 π0Ð→ CPn.

In the case n = 1, by Proposition 4.4, we have

S1 → S3 → S2.
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● (Homeomorphism, not submersion) The map

R→ R
x↦ x3

is surjective (indeed, a homeomorphism) but is not a submersion because the differ-

ential at zero is not surjective.

● (Not homeomorphism, not submersion) We can extend the previous example to the

complex numbers:

C→ C
z ↦ z3.

Notice that the fiber over any point w ≠ 0 consists of three points, whereas the fiber

over w = 0 consists of a single point. So over C, the failure to be a submersion shows

up not only in a drop in rank of the differential but in a change in the topology of

the fibers.

12.3. Properties of submersions.

Proposition 12.6. A submersion is an open map. A surjective submersion is a quotient

map.

Proof. The openness follows from Proposition 12.2. For, given a neighborhood W ⊂M and

a point y ∈ F (W ), let p such that F (p) = y. There exist neighborhoods U ∋ p and V ∋ y
such that F ∣U takes the form of a projection onto a coordinate plane containing V ; we may

assume without loss of generality that U ⊂W. In particular, F (U) = V, so V ⊂ F (W ). Since
y ∈ F (M) was arbitrary, we are done.

It is a fact that a continuous, open, surjective map is a quotient map. □

Proposition 12.7. Let M,N, and P be smooth manifolds. Suppose that we have a diagram

of maps

M
F̃

  

π
��

N
F
// P,

where π is a (smooth) submersion and F, F̃ are continuous. Then F̃ is smooth if and only

if F is smooth.

Proof. To check smoothness, it suffices to use a coordinate chart of the form guaranteed by

Proposition 12.2. But then the claim is obvious, because smoothness of a map amounts to

smoothness of all coordinate functions. □

Corollary 12.8. Surjective submersions have the smooth descent property. I.e., given

a smooth map F̃ as above which is constant on the fibers of π, then there exists a unique

smooth map F such that the diagram commutes.
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Proof. Since a surjective submersion is a quotient map, there exists a continuous map F com-

pleting the diagram by the universal property of quotient maps. By the previous proposition,

if F̃ is smooth, then so is F. □

Remark 12.9. This property is useful for doing your homework, especially in the case of

local diffeomorphisms. For instance, to define a map from T n or RPn into another space,

you just have to make a smooth map from Rn or Sn, respectively, that is constant on fibers

(i.e. equivalence classes).

Another application that may be helpful later on is:

Theorem 12.10 (Uniqueness of smooth quotients). Suppose given a diagram of smooth

manifolds and surjective submersions of the form:

M
π1

}}

π2

!!

N1
oo // N2.

If π1 is constant on the fibers of π2 and vice-versa, then N1 and N2 are diffeomorphic by a

map which completes the diagram.

Proof. This follows by completing the diagram in both directions using Corollary 12.8. □

12.4. The constant rank theorem. We have the following generalization of the immersion

and submersion theorems proven above.

Theorem 12.11. Suppose that dFx has constant rank k for each x ∈ U ⊂M, and let p ∈ U.
After changing coordinates near p and F (p), F takes the local form

F (x1, . . . , xk, y1, . . . , ym−k) = (x1, . . . , xk,
n−k
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0).

Remark 12.12. While being injective or surjective (i.e. having maximal rank) is an open

condition, having constant rank less than the maximal one is *not* an open condition,

because the rank can be lower at a point than it is at nearby points (due to a minor vanishing

there). So the assumption of this theorem is stricter than the previous two.

Proof. Suppose that the top k × k block of dFp is nonsingular. Then the restriction to

the coordinate plane Rk × {0} ⊂ Rm is an immersion. By Proposition 11.2, we can choose

coordinates on N so that

F (x1, . . . , xk,0, . . . ,0) = (x1, . . . , xk,
n−k
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0).

Meanwhile, the composition of F with the projection onto Rk × {0} ⊂ Rn is a submersion.

By Proposition 12.2, we can change the first k coordinates on M so that our map takes the

form

F (x1, . . . , xk, y1, . . . , ym−k) = (x1, . . . , xk,G(x, y)),
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for some map G(x, y) satisfying G(x,0) ≡ 0 (by our first choice).4 We have

dFx = (
1k×k 0
∂Gi

∂xj
∂Gi

∂yj
) .

But since the rank is exactly k for all x ∈ U, the lower-right block must vanish identically.

In particular, the function G(x, y) is independent of y, so G(x, y) = G(x,0) ≡ 0 for all (x, y).
Hence, the map F is already in the required form. □

13. Submanifolds (Wed 10/2)

13.1. Submanifolds and embeddings. Let k ≤ m = dim(M). A subset S ⊂M is a called

a submanifold5 of M if for all p ∈ S there exists a “slice chart” for S through p, i.e., a

coordinate chart U for M containing p, together with constants c1, . . . , cm−k, such that

φ(U ∩ S) = {(x1, . . . , xk, c1, . . . , cm−k) ∈ Û}.
Example 13.1. S1 ⊂ R2 is a submanifold. To make slice charts we can use polar coordinates:

(r, θ) ∈ (0,∞) × (−π,π) or (0,2π) maps to

(x, y) = (r cos θ, r sin θ).
To check that these are charts, one can either write down the inverse maps or check that

the map and its differential at each point are bijective. The plane r = 1 in either chart

corresponds to the intersection with S1.

One can use the radius function in a similar way to extend any chart on Sn into a slice

chart for Sn ⊂ Rn+1.

Definition 13.2. The codimension of a k-dimensional submanifold S ⊂ M is m − k. A
submanifold of codimension zero is an open subset; a submanifold of codimension m is a

discrete set of points. A submanifold of codimension one is called a hypersurface.

To legitimize the above definition, we need to show that a submanifold is in fact a manifold.

Proposition 13.3. Let A be an atlas for M with the property that for each p ∈ S, there
exists (U,φ) ∈ A which is a slice chart for S through p. Then the atlas

AS ∶= {(U ∩ S, φ∣S) ∣ (U,φ) ∈ A is a slice chart for S}
is a smooth atlas for S.

Proof. The atlas AS covers S by assumption and gives homeomorphisms to open subset of k-

dimensional planes in Rn, which we can identify with open sets in Rk. So this is a topological

atlas. To check smoothness of the transition maps, simply observe that a map is smooth if

and only if its coordinate functions are smooth, and this remains true after restricting to

coordinate planes. □
4One can (and should) also check that in the proof of Proposition 12.2, if F (x,0) = x, then A(x,0) = x,

so that our previous choice is not messed up.
5Lee’s book talks about something he calls “immersed submanifolds.” We will not do that. Our definition

is equivalent to Lee’s definition of an “embedded submanifold,” as we will show.
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Definition/Lemma 13.4. Let S ⊂M be a submanifold. The induced smooth structure

defined by AS above depends only on the smooth structure of M.

Proof. We have to show that if A and A ′ are two equivalent atlases on M, then AS and

A ′
S are both equivalent. But then A ∪A ′ is an atlas, so by the previous proposition, the

restriction (A ∪A ′)S = AS ∪ A ′
S is also an atlas. We have shown that AS and A ′

S are

equivalent atlases, i.e. define the same smooth structure. □

Proposition 13.5. (a) Let F ∶M → N. Then the restricted map F ∣S ∶ S → N is smooth.

(b) Let F ∶ N → M with F (N) ⊂ S. Then F is smooth if and only if the induced map

F ∶ N → S is smooth

Proof. Since smoothness can be checked in any chart, both statements can be checked in

adapted charts, where they are obvious. □

Proposition 13.6. Let F ∶ N → M be an embedding. Then S = F (N) is a submanifold of

M and F ∶ N → S is a diffeomorphism. Conversely, for a submanifold S, the inclusion map

S ↪M is an embedding.

Proof. Let S = F (N). The map F induces a homeomorphism from N to S by assumption.

Proposition 11.2 shows that there exists a slice chart through every point, so S is a sub-

manifold. In the same slice chart, the inverse map is simply given by the identity, which is

smooth.

The second statement is only claiming that the differential is injective; this is again obvious

in a slice chart. □

Corollary 13.7. Every submanifold is the image of a unique embedding up to diffeomor-

phism. I.e., if S ⊂ M is a submanifold and there exist two embeddings F1 ∶ N1 → M and

F2 ∶ N2 →M with Fi(Ni) = S for i = 1,2, then N1 is diffeomorphic to N2.

Proof. We are given a diagram of maps:

N1

  

S ⊂ M.

N2

>>

We have just shown that these arrows are smooth, and are in fact diffeomorphisms. So we

can fill in the vertical arrow by a unique diffeomorphism. □

Remark 13.8. This result can be compared with Theorem 12.10 from last time.

13.2. The fibers of a submersion are submanifolds.

Definition 13.9. A submanifold S ⊂M is properly embedded if it is also a closed subset.

(This is true iff the inclusion embedding ι ∶ S →M is a proper map, hence the terminology.)
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Example 13.10. ● If S ⊂ M is itself compact, then since M is Hausdorff, it is auto-

matically properly embedded.

● On your homework you are tasked with writing down the embedding of the Möbius

strip in R3 that was drawn on the first day of class and again today. This is *not* a

proper embedding, as one sees by considering the (missing) boundary of the strip.

Theorem 13.11. Let F ∶ M → N be a submersion. For each q ∈ N, the fiber F −1(q) is a

properly embedded submanifold of M. If F is a proper map then F −1(q) is compact. The

same is true for constant rank maps.

Proof. The fibers are closed since F is continuous. It remains to construct slice charts.

Given q ∈ N and p ∈ F −1(q), we may work in a charts centered at p and q. By Proposition

12.2/Theorem 12.11, there exists a chart on M near p such that F takes the form

F (x1, . . . , xn, y1, . . . , ym−n) = (x1, . . . , xn).

We have

F −1(q) = F −1(0, . . . ,0) = {(0, . . . ,0, y1, . . . , ym−n)}.
so this is a slice chart, as desired. (Note that the same chart works as a slice chart for fibers

over nearby points in N.) □

Example 13.12. Let

F ∶ Rn+1 ∖ {0} → R+
x↦ ∣x∣2 = x ⋅ x.

We have

dFx(v) = 2x ⋅ v.
For x ≠ 0, this is surjective onto TR = R, so a submersion. The level set is the sphere of

radius
√
c ∶

F −1(c) = Sn√
c
.

So, finally, we can show that the sphere is a smooth manifold with only one line of calculation.

13.3. The tangent space to a submanifold. Given a submanifold S ⊂M and p ∈ S, since
the inclusion map ι ∶ S →M is an embedding, it induces an injective map dιp ∶ TpS ↪ TpM.

As with any injective map, it makes sense to identify TpS with its image inside TpM, as we

shall do.

Proposition 13.13. The tangent space TpS ⊂ TpM is characterized by:

1. v ∈ TpS ⇐⇒ v = γ′(0) for some smooth path γ ∶ (−ε, ε) → M whose image is

contained entirely within S.

2. v ∈ Tp if and only if for any neighborhood p ∈ U ⊂M and function f ∈ C∞(U) which
vanishes identically on S ∩U, we have df(v) = 0.
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3. Suppose that S = F −1(q) is a fiber of a submersion. Then TpS = kerdFp. In particular,

we have an exact sequence of vector spaces

0→ TpS
dιpÐ→ TpM

dFpÐ→ TF (p)N → 0.

Proof. These are each obvious in a slice chart. □

Here is another one for later (used by most of you without proof on HW 4):

Proposition 13.14. A smooth vector field on M such that Xp ⊂ TpS for all p ∈ S restricts

to a smooth vector field on S.

Proof. That the restriction defines a tangent vector on S follows by the last proposition.

Smoothness can be checked in any slice chart, as usual. □

14. Jacobian criteria (Fri 10/4-Mon 10/7)

In this section we will go over the methods that we currently have to construct submani-

folds and add a few in the process. We begin by reformulating the definition of submanifold

in the way it is used in practice.

Definition/Lemma 14.1. Let M be a manifold of dimension m, S ⊂ M a subset, and

U ⊂M an open set. A collection f 1, . . . , fm−n ∈ C∞(U) are called (local) defining functions

for S on U if

● S ∩U = {f i(x) = ci∀ i}, for some constants c1, . . . , cm−n

● For each p ∈ S ∩U, the (m − n) × n Jacobian matrix

( ∂f
i

∂xj
∣
p

)

has full rank m − n. Here xj are any coordinates at p.

Then S is a submanifold of M if and only if there exist defining functions for S near each

point p ∈ S. This is called the Jacobian criterion for a submanifold.

In the case that S ⊂ U, these are called global defining functions.

Proof. One can complete the collection of defining functions at p to a slice chart in which

yi = f i for i = 1, . . . ,m − n. This can either be proven directly using the inverse function

theorem as usual, or one can define a map Φ ∶ U → Rm−n by

Φ(x) = (f 1(x), . . . , fm−n(x)) .

The Jacobian criterion just says that dΦp is surjective, so the existence of the remaining

coordinates follows from Proposition 12.2 (with x and y reversed). □
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We will now list four methods to construct submanifolds.

1) Write down a map F ∶ N → M and show that it is a homeomorphism with injective

differential (i.e. an embedding). For instance, we did this in Example 11.1 to produce an

embedding T 2 → R3. You have an embedding RP2 → R4 on your homework.

2) Write down a collection of local or global defining functions and check the Jacobian

criterion.

Example 14.2. Let M = R3 and define

S = {
x3 + y3 + z3 = 1
x + y + z = 0

} .

The Jacobian matrix is

(3x
2 3y2 3z2

1 1 1
) .

The determinant of the first 2×2 minor is 3x2−3y2. This vanishes iff x = ±y. The determinant

of the first and last one is 3x2 − 3z2. This vanishes iff x = ±z. So the Jacobian criterion fails

where y = ±x and z = ±x. But then the second equation reads

x ± x ± x = 0,

whose only solution is x = 0. Then also y = z = 0. Since the point (0,0,0) does not lie on S,

the Jacobian criterion is satisfied and S is a 1-dimensional submanifold of R3.

3) Here is yet another formulation of the Jacobian criterion.

Definition/Lemma 14.3. Let F ∶ M → N be a smooth map. A point q ∈ N is called a

regular value of F if dFp is surjective for all p ∈ F −1(q). In this case, if S = F −1(q) is
nonempty, then it is a properly embedded submanifold of M of codimension n = dim(N).

Proof. The closedness follows because {q} ⊂ N is a closed subset and F is continuous. The

fact that S is a submanifold was proven verbatim in Theorem 13.11 above. □

Notice that 2) is just 3) in the case that N = Rn and the defining functions are global.

Example 14.4. A submersion is precisely a map for which every q ∈ F (M) ⊂ N (which is

an open subset) is a regular value.

Example 14.5 (The sphere, again). The map in Example 13.12 is also smooth at the origin,

so goes from Rn+1 → R. All values are regular except c = 0. The fibers over R+ are spheres,

and the fibers over R− are empty, but the fiber over c = 0 is a point, which fails to be a

submanifold of codimension one (hypersurface).

Example 14.6. LetM = R2. For λ ∈ R, consider the polynomial fλ(x, y) = y2−x(x−1)(x−λ),
and let

Sλ = {fλ(x, y) = 0} ⊂ R2.

You will check on homework that this is smooth for λ ≠ 0,1. In class we drew a picture of

this curve for different values of λ. For λ > 0, it is the union of an S1 component passing
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through (0,0) and (1,0) and a noncompact component passing through (λ,0). As λ → 1,

this degenerates into the curve S1 defined by

y2 = x(x − 1)2

which has a singular point at (1,0). In fact, S1 is the image of the immersion

t↦ (t2, t3 − t).

For 0 < λ < 1 and λ < 0, Sλ is the union of an S1 component through (0,0) and (λ,0) and a

noncompact component through (1,0). The subset S0 defined by

y2 = x2(x − 1)

is the union of a noncompact component through (1,0) and a single point at (0,0), so is not

even the image of an immersion (over the real numbers).

The Jacobian criterion also works over C. We can prove the case of a single holo-

morphic defining function now; the case of several functions requires a bit more discussion

as done for instance in a class on complex manifolds.

Definition/Lemma 14.7. Suppose f ∶ Cn → C is continuous and holomorphic in each

variable. Fix c ∈ C and let S = f−1(c). Suppose that for each p ∈ S, ∂f
∂zj
≠ 0 for some

j ∈ {1, . . . , n}. Then S is a submanifold of Cn of real codimension two, called a complex

hypersurface.

Proof. We identify Cn with R2n by writing the coordinate functions as zj = xj + iyj, for
j = 1, . . . , n. By assumption, for some j, we have

0 ≠ ∂f
∂zj
= lim

t→0
t∈C

f(z1, . . . , zj + t, . . . , zn) − f(z1, . . . , zn)
t

.

We argue as in the proof of the Cauchy-Riemann equations. Since this limit exists for t ∈ R,
we can take the limit along the real axis to obtain

∂f

∂zj
= ∂f
∂xj

.

Since the limit also exists for t ∈ iR, we also have

∂f

∂zj
= −i ∂f

∂yj
,

so ∂f
∂yj
= i ∂f

∂xj
and both are nonzero. Hence, viewed as vectors in R2 = C (where i acts by a

π/2 rotation), they are linearly independent. □

Example 14.8. In the previous example, we could have taken M = C2 and considered fλ
as a polynomial over C. The Jacobian criterion is still true for λ ≠ 0,1, so we obtain a

codimension-two submanifold of C2, i.e., a surface. This is called an elliptic curve.

4) Continuing in the algebraic-geometry vein, I’ll show you how easy it is to construct smooth

hypersurfaces in KPn. Let
F (X1, . . . ,Xn+1)
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be a homogeneous polynomial of degree d in n + 1 variables, and put

S = {[X1, . . . ,Xn+1] ∈KPn ∣ F (X1, . . . ,Xn+1) = 0} ⊂KPn.

Notice that this is well-defined due to the homogeneity of F ∶ if F (X1, . . . ,Xn+1) = 0 then

F (λX1, . . . , λXn+1) = λdF (X1, . . . ,Xn+1) = 0.
We first need a lemma:

Lemma 14.9 (Euler’s formula). For a homogeneous polynomial of degree d, we have the

identity
n+1
∑
i=1
X i ∂F

∂X i
(X) = d ⋅ F (X).

Proof. It suffices to check the formula on a monomial (X1)d1⋯(Xn+1)dn+1 . For each i, we

have

X i ∂

∂X i
(X1)d1⋯(Xn+1)dn+1 = di(X1)d1⋯(Xn+1)dn+1 .

Since ∑di = d, we get the formula. □

Proposition 14.10. Suppose that for each p ∈ S, there exists i ∈ {1, . . . , n + 1} such that

∂F

∂X i
∣
p

≠ 0.

Then S is a compact hypersurface in KPn, i.e. a submanifold of codimension 1 or 2 if K = R
or C, respectively.

Proof. Let Ui be the standard charts. On Ui, take the defining function

fi(x1, . . . , x̂i, . . . , xn+1) = F (x1, . . . ,1, . . . , xn+1),
which vanishes exactly on Ui ∩ S. To check the Jacobian criterion, note that since xj = Xj

Xi

for j ≠ i, we have
∂f

∂xj
= ∂F

∂Xj
.

If any of these are nonvanishing at p, we are done. On the other hand, if all of them vanish,

by Euler’s formula, we have

0 = F (x1, . . . ,1, . . . , xn+1) = ∑
j≠i
xj

∂F

∂Xj
∣
p

+ ∂F

∂X i
∣
p

= ∂F

∂X i
∣
p

,

so the last one also vanishes. But this contradicts our assumption that all the partials do

not vanish simultaneously on S. □

Example 14.11. We return to Example 14.6 yet again. We described in Example 14.8 how

to extend the ambient domain from R2 to C2 to obtain a surface. We can extend further to

CP2 just by writing down the homogeneous polynomial

Fλ(X,Y,Z) = ZY 2 −X (X −Z) (X − λZ) .
We have Fλ(x, y,1) = fλ(x, y), so the zero locus of Fλ agrees with Sλ when restricted to

the standard coordinate chart. You’ll check on homework that Fλ satisfies the Jacobian
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criterion, so defines a smooth curve in CP2. This curve is now compact, since it is a closed

subset of a compact space. We have compactified the affine curve to a projective curve.

More generally, one can compactify a curve in C2 by defining the homogeneous polynomial

F (X,Y,Z) = Zdf(XZ , YZ ). This may or may not satisfy the Jacobian criterion on the line at

infinity {[X,Y,0]}. If it does, one obtains a smooth closed surface. A little bit more work is

required to show that this surface is orientable.

Meanwhile, we know that compact surfaces are classified by genus. A very interesting

(classical) question is: given a homogeneous polynomial of degree d satisfying the Jacobian

criterion, what is the genus of the resulting curve in CP2? The answer turns out to be:

g = (d − 1)(d − 2)
2

.

Although it will be possible to prove this with the tools of Math 761, the result belongs more

properly to a course on Riemann surfaces.

15. The embedding problem (Mon 10/7)

Today we will discuss the following classical

Question. Which manifolds are diffeomorphic to submanifolds of RN , for some (possibly

large) N?

Answer. All of them.

We will prove the compact case and state a more precise general result (known as the

Whitney embedding theorem) at the end of the section.

The embedding theorem itself is much less important and interesting than the idea of

the proof, which relies on Sard’s theorem. That is a cornerstone of the field of differential

topology. However, this really requires a course of its own. Since we are instead headed

towards differential geometry next semester, it probably makes more sense to prioritize other

topics.

From the geometric point of view, it definitely is interesting to see some more explicit

examples of embeddings. We can also give a nifty application (Theorem 15.3) which does

not follow from the abstract embedding theorem.

As of now, we know how to embed Sn (obviously), T 2 (Example 11.8), higher-genus

orientable surfaces (by making a drawing), and RP2 (on homework) in Euclidean space.

In class we looked at the immersed Klein bottle in R3 and convinced ourselves that just

by adding a dimension we could easily make it an embedding. Let’s see if we can also do

projective spaces and Grassmannians.

Example 15.1. Define F ∶KPn →K(n+1)
2
by

[X1, . . . ,Xn+1] ↦ (X
iX̄j

∣X ∣2 )
n+1

i,j=1
.
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This map is well-defined and smooth by Corollary 12.8. To see that it’s injective, let X and

Y with ∣X ∣ = ∣Y ∣ = 1 and assume that F (X) = F (Y ). We then have

X iX̄j = Y iȲ j

for all i, j. Considering the case i = j, we have

∣X i∣2 = ∣Y i∣2

for each i. Now, choose any j such that Xj ≠ 0, and divide the above equation by this one,

to obtain

X i X̄
j

∣Xj ∣2 = Y
i Ȳ

j

∣Y j ∣2
X i

Xj
= Y

i

Y j
.

Letting λ = Xj

Y j , this translates to

X i = λY i

for all i. So [X] = [Y ] , as desired. Since KPn is compact, F is a homeomorphism onto

its image. One can check that the differential is injective using a slightly longer calculation

than the above. However, we will instead generalize this construction to Grassmannians and

check it there.

Notice that the image of this map actually lies in the unit sphere inside K(n+1)
2
, because

∣F (X)∣2 = ∑
i,j

X iX̄j (X̄ iXj)
∣X ∣4 = ∑

i,j

∣X i∣2∣Xj ∣2
∣X ∣4 = 1.

Example 15.2. We will show that the Grassmannian Grk(Kn) also embeds into K(n+1)
2
.

Given a plane X ∈ Grk(Kn), we can define the orthogonal projection:

PX ∶Kn →X

v ↦
k

∑
i=1
⟨v, ei⟩ ei,

where {ei} is any orthonormal basis for X. This is the unique linear endomorphism of Kn

which satisfies

P 2
X = PX , P ∗X = PX , ImPX =X.(15.1)

So we can define the required map by sending

X ↦ PX ,

which is injective. We will now argue that this is an embedding.

Suppose that the plane X is spanned by an n × k matrix of full rank, which we also call

X (although this matrix is not unique). If the columns of X are orthonormal, then we have

the standard formula PX = XX∗. The following formula works for any matrix with linearly

independent columns:

PX =X (X∗X)−1X∗.
The matrices in the product are of dimensions n × k, k × k, and k × n, respectively, so the

product is n × n. It is easy to check that this satisfies the requirements (15.1).
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Now let X0 be an arbitrary point in the Grassmannian. We can choose a standard coor-

dinate chart U with Q =X⊥0 and P =X0, per Example 4.6. A point X ∈ U is represented by

a matrix

X = (1
A
) ,

where A ∈Mat
(n−k)×k
K is arbitrary. We have

X0 = (
1

0
) .

From the above formula, we have

PX = (
(1 +A∗A)−1 (1 +A∗A)−1A∗
A (1 +A∗A)−1 A (1 +A∗A)−1A∗) .

Since 1 + A∗A is positive-definite, it is invertible, so the expression makes sense on U and

gives a smooth function. The derivative at X0 is simply

dFX0(Z) = (
0 Z∗

Z 0
) ,

which is injective. An inverse map is given by the restriction to ImF of the map

(B C

D E
) ↦ ( 1

DB−1
) ,

which is smooth on an open set containing the image. We conclude that F is an embedding.

Theorem 15.3. The Grassmannian Grk(Kn) is compact.

Proof. We have demonstrated that Grk(Kn) is homeomorphic to the set of orthogonal pro-

jection operators on Kn of rank k. Notice that the rank of a projection operator is simply

the trace. So this subset is defined by the three conditions

(15.2) P 2 = P, P ∗ = P, TrP = k.

These are each polynomial (or linear) in the matrix entries, so define closed subsets of Matn×kK ,

whose intersection is again closed.

Note that the set of such P is also bounded, because

∣P ∣2 = TrPP ∗ = TrP 2 = TrP = k.

Therefore it is contained in the sphere of radius
√
k inside Matn×kK (compare with the last

example!). By Heine-Borel, the set defined by (15.2) is compact; so is Grk(Kn). □

We did not discuss the next result in class due to lack of time, but we include it here

because the proof is so simple. (It might be called the very weak Whitney embedding

theorem.)

Proposition 15.4. Given a compact manifold M, there exists N ∈ N such that M can be

embedded in RN .
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Proof. CoverM with L regular coordinate balls Bi, such that Bi ⊂ B′i and the chart φi maps

from B′i to Rn. Let ρi be a smooth bump function for Bi ⊂ B′i. Define
F (p) = (ρ1φ1(p), . . . , ρLφL(p), ρ1(p), . . . , ρL(p)) .

This is injective: if F (p) = F (q) then for p ∈ Bi, we have 1 = ρi(p) = ρi(q). This implies that

p, q ∈ B′i, so we must have φi(p) = φi(q). But φi is injective on B′i, so p = q.
To see that F is an immersion, let p ∈ Bi. Then (dφi)p is injective, and since this is a

component of dFp, the latter is also injective.

Since M is compact, we have a homeomorphism onto F (M) ⊂ RL(n+1). □

Theorem 15.5 (Whitney embedding/immersion). A smooth manifold of dimension n can

be embedded in R2n and immersed in R2n−1.

Proof. The proof of the same statement with 2n + 1 in place of 2n, sometimes called the

“weak” version, is in Lee. The strong version requires another trick discovered by Whitney.

All of these results start from the embedding of the previous proposition (or the version for

manifolds with boundary) and proceed by playing with it to reduce the ambient dimension.

□
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Part 4. Vector fields

16. Vector fields, derivations, and the Lie bracket (Wed 10/09)

16.1. Equivalent definitions of smoothness.

Definition 16.1. Let π ∶ T → X be any map of sets. Let U ⊂ X be a subset. A section of

π over U is a map σ ∶ U →X such that π ○ σ = IdU . In other words,

σ(x) ∈ π−1(x)

for all x ∈ U.
If T and X are topological spaces, resp. smooth manifolds, then we will assume that π

is continuous, resp. smooth, and the set U is open. Then we can talk about continuous or

smooth sections over U.

Recall that we defined the tangent bundle

TM = ⊔x∈MTxM

as a set, and used the smooth manifold chart lemma to give it a topological and smooth

structure. This was defined by the charts

φ̃α ∶ π−1(Uα) → Uα ×Rn

which were defined by

(x, v) ↦ (φα(x), (v1, . . . , vn)),
where v = ∑i vi ∂

∂xi
in the coordinates defined by φα. Here π ∶ TM →M is the projection map

taking all of TxM to x.

Definition 16.2. A rough vector field over U is just a set-theoretic section X ∶ U → TM ∣U .
A smooth vector field is a smooth section. We let X (U) denote the vector space of smooth

vector fields over U.

Note that a rough vector field X defines a map

X ∶ C∞(U) → Fun(U,R)
X(f)(p) =Xp(f)

(16.1)

This is a derivation, meaning that

X(fg) =X(f)g + fX(g)

where the equality is in the sense of functions, i.e., it holds for every p ∈ U.

Proposition 16.3. Let X be a rough vector field over U. The following are equivalent:

1. X is smooth (i.e. X ∈X (U)).

2. In any coordinate chart V meeting U, we have

X ∣U∩V = ∑X i(x) ∂
∂xi

,

where the component functions X i(x) are smooth on U ∩ V.
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3. The image of the map (16.1) lies in C∞(U) ⊂ Fun(U,R), i.e., X is a derivation on

the ring C∞(U).

Proof. Items (1) and (2) are equivalent by the definition of the smooth structure on M.

That (1-2) imply (3) is also clear by the local expression.

To go from (3) to (2), define the smooth functions X i(x) =X(xi). Note that f ↦X(f)(p)
is a derivation at p. We showed on homework that every derivation at p is a sum of partials;

in particular, X(f)(p) = ∑X i(p) ∂f
∂xi
∣
p
at each point p ∈ U. Since the two are equal at each

point, they are equal on functions. □

Corollary 16.4. Every smooth derivation X ∶ C∞(U) → C∞(U) corresponds to a smooth

vector field.

Proof. Given a derivation X, one obtains a rough vector field by letting Xp(f) = X(f)(p),
which is a derivation at p by definition. Then apply the previous proposition. □

16.2. Algebraic digression. Let R be a commutative algebra over a field K. Throughout

this section, X,Y, and Z will denote three arbitrary derivations on R, i.e. K-linear endomor-

phisms satisfying the Leibniz rule. We will later go back to the case of vector fields acting by

derivations on R = C∞(U), but it is useful to prove a few statements without this baggage.

Define the commutator bracket

[X,Y ] =XY − Y X,

meaning, the endomorphism whose value on f ∈ R is given by [X,Y ] (f) = X(Y (f)) −
Y (X(f)).

Lemma 16.5. [X,Y ] is again a derivation.

Proof. K-linearity is obvious. To check the Leibniz rule, for f, g ∈ R, we calculate

[X,Y ] (fg) =X(Y (f))g +X(f)Y (g) +X(g)Y (f) + fX(Y (g))
− Y (X(f))g − Y (f)X(g) − Y (g)X(f) − fY (X(g)).

The cross-terms cancel, and we are left with

[X,Y ] (fg) = [X,Y ] (f)g + f [X,Y ] (g),

as claimed. □

The following Lemma does not require X,Y,Z to be derivations, but holds for any endo-

morphisms (or more generally, elements of an associative algebra).

Lemma 16.6. The commutator bracket satisfies

● [X,Y ] = − [Y,X] (antisymmetry)

● [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi identity).
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Proof. The antisymmetry is obvious from the definition. To prove the Jacobi identity, we

calculate:

LHS =XY Z −XZY − Y ZX +ZY X
+ Y ZX −ZY X −ZXY + Y XZ
+ZXY − Y XZ −XY Z +XZY.

(16.2)

The terms cancel in pairs. □

Remark 16.7. We will reinterpret the Jacobi identity at least once below, perhaps making

it seem less like an algebraic coincidence.

Definition 16.8. A Lie algebra is a vector space V together with a binary operation

[−,−] ∶ V × V → V which is bilinear, antisymmetric, and satisfies the Jacobi identity.

Example 16.9. We have shown that any associative algebra over K, equipped with the

commutator bracket, is a Lie algebra. In particular, the algebra of endomorphisms on any

vector space (under composition, which is associative) is a Lie algebra.6 Finally, we have

shown that the space of derivations on a commutative algebra forms a Lie subalgebra of the

space of all endomorphisms of the underlying vector space.

Definition 16.10. A derivation on a Lie algebra V is an endomorphism D ∶ V → V that

satisfies

D [Y,Z] = [DY,Z] + [Y,DZ]

for all Y,Z ∈ V.

Lemma 16.11. Let X ∈ V be an element of a Lie algebra. Define the endomorphism

DX ∶ V → V by

DXY = [X,Y ] .

Then DX is a derivation.

Proof. Rearranging the second a third terms of the Jacobi identity using antisymmetry of

the bracket, we have

(16.3) [X, [Y,Z]] = [[X,Y ] , Z] + [Y, [X,Z]] .

This is precisely the statement that DX is a derivation on the Lie algebra V. □

Remark 16.12. This gives perhaps a more satisfying formulation to the Jacobi identity. It

also suggests that the bracket [X,−] represents some sort of derivative. Later we will see

this geometrically in the case of vector fields.

6In fact, it is a theorem (Ado’s Theorem) that every finite-dimensional Lie algebra over K arises in this

way.
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16.3. The Lie bracket of vector fields. We showed above that smooth vector fields X ∈
X (U) are equivalent to derivations on C∞(U). By Lemma 16.5, we may make the following

definition:

Definition 16.13. The Lie bracket of two smooth vector fields X,Y ∈X (U) is the deriva-
tion [X,Y ] ∈X (U). This acts on a smooth function f ∈ C∞(U) by

[X,Y ] (f) =X(Y (f)) − Y (X(f)).
Working in a local coordinate system {xi}ni=1, we have X =X i ∂

∂xi
and Y = Y i ∂

∂xi
for smooth

functions X i(x) and Y i(x) (the local components). The Lie bracket is then given by

[X,Y ] (f) = ∑
i,j

[X i ∂

∂xi
, Y i ∂

∂xi
]

= ∑
i,j

X i∂Y
j

∂xi
∂f

∂xj
+X iY j ∂2f

∂xi∂xj

− Y j ∂X
i

∂xj
∂f

∂xi
−X iY j ∂2f

∂xj∂xi
.

Since partials commute, the last terms cancel. If we switch the indices i and j on the first

term, factor out ∂f
∂xi
, and ignore f, we can write

[X,Y ] = ∑
i,j

(Xj ∂Y
i

∂xj
− Y j ∂X

i

∂xj
) ∂

∂xi
.

The i’th component of [X,Y ] is given by

[X,Y ]i = ∑
j

(Xj ∂Y
i

∂xj
− Y j ∂X

i

∂xj
)

=X(Y i) − Y (X i).
(16.4)

Example 16.14. Let X = ∂
∂xj1

and Y = ∂
∂xj2

be coordinate vector fields. Since partials

commute, or by the above formula with X i = δij1 and Y i = δij2 , we see that [X,Y ] = 0.
Example 16.15. Suppose M = Rn and consider the vector field with components X i = xi ∶

X = ∑
i

xi
∂

∂xi
.

This is called the radial vector field or sometimes the Euler vector field for reasons we’ll

see shortly.

Let Y i(x), i = 1, . . . , n, be a collection of homogeneous polynomials of the same degree, d,

and take Y = ∑Y i(x) ∂
∂xi
. We then have

[X,Y ]i = ∑
j

xj
∂Y i

∂xj
− Y jδij

= ∑
j

xj
∂Y i

∂xj
− Y i.

By Euler’s formula, Lemma 14.9, we have

[X,Y ] = (d − 1)Y.
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We will explain this result later based on the fact that X is the generator of homothetic

rescaling on Rn.

17. Vector fields tangent to submanifolds, F -related vector fields (Fri

10/11)

17.1. Vector fields tangent to submanifolds.

Definition 17.1. Let S ⊂M be a submanifold. A vector field X on M is tangent to S if

Xp ∈ TpS ⊂ TpM for all p ∈ S.
Proposition 17.2. TFAE:

1. X is tangent to S

2. X annihilates any collection of defining functions on S, i.e., if f 1, . . . , fn−k are defin-

ing functions then X(f i)∣S = 0 for i = 1, . . . , k.

3. For any function f that is constant on S, X(f)∣S ≡ 0.

Proof. Given a set of defining functions, we can choose a slice chart {x1, . . . , xk, y1, . . . , yn−k}
such that yi = f i for i = 1, . . . , n − k. Writing

X =
k

∑
i=1
X i ∂

∂xi
+
n−k
∑
j=1

Xk+j ∂

∂yj
,

we have X tangent to S if and only if Xk+j(x1, . . . , xk,0, . . . ,0) ≡ 0 for j = 1, . . . , n − k.
To see (1) ⇐⇒ (2), note that X(yj) = Xk+j, so these vanish on S if and only if X is

tangent to S.

(3) ⇒ (2) is clear. So see (1) ⇒ (3), note that if f is constant on S then ∂f
∂xi
≡ 0 on S for

i = 1, . . . , k. Since also Xk+j ≡ 0 on S, we have X(f) ≡ 0 on S, as claimed. □

Corollary 17.3. Suppose X and Y are both tangent to S. Then [X,Y ] is also tangent to

S, and

[X,Y ]∣S = [X ∣S , Y ∣S] .
Proof. By (3) of the previous Lemma, we have Y (f) = X(f) = 0 on S if f is constant on S.

In particular, these are constant, so we also have X(Y (f)) = Y (X(f)) = 0 on S. Therefore

[X,Y ] f = 0 on S, so again by (3), [X,Y ] is tangent to S.
To see that the Lie bracket on S is the restriction of the Lie bracket on M, we calculate

in a slice chart as before. For 1 ≤ i ≤ k, the i’th component of [X,Y ] is given by

[X,Y ]i∣
S
=

n

∑
j=1
(Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj
)∣
S

=
k

∑
j=1
(Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj
)∣
S

= [X ∣S , Y ∣S] .
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□

Example 17.4. To check that a vector field on Rn is tangent to Sn−1, intuitively, we should

check that it is orthogonal to the radial vector field. Let’s prove that this is correct. A

defining function for Sn is

∣x∣2 = ∑(xi)2 = 1.
By the previous Lemma, a vector field X is tangent to Sn−1 if and only if it annihilates the

defining function. We have:

X(∣x∣2) = 2∑X(xi)xi = 2∑X ixi = 2 ⟨X,x⟩ .

So indeed X is tangent iff it is orthogonal to the radial vector field x.

Example 17.5. Let M = R2n. Define the vector field

X =
n

∑
i=1
(x2i ∂

∂x2i−1
− x2i−1 ∂

∂x2i
) .

We claim that this restricts to a nowhere-vanishing vector field on S2n−1. First we must check

that it is tangent:

⟨X,x⟩ = ∑x2ix2i−1 − x2i−1x2i = 0.
It vanishes nowhere on Sn because the same is true of X on Rn, by examining its coefficients.

Note that if we include R2n ⊂ R2n+1 and use the same expression to define a vector field,

we obtain one that vanishes only on the x2n+1-axis, so only at two points of Sn. This is the

one you may have used on your homework. (We will see shortly that these indeed descend

to projective space).

Example 17.6. Consider the following three vector fields on S2 ⊂ R3 ∶

X = z ∂
∂y
− y ∂

∂z
, Y = x ∂

∂z
− z ∂

∂x
, Z = y ∂

∂x
− x ∂

∂y
.

You will show on homework that these satisfy

[X,Y ] = Z

plus cyclic permutations. By Corollary 17.3, you can work on R3, so this is just a simple

calculation. The closure under taking brackets implies that X,Y, and Z span a 3-dimensional

Lie subalgebra of X (S2). Later we will understand why this is the case.

17.2. F -related vector fields. Recall that we can push forward a tangent vector by a

smooth map F, either by post-composing paths with F (in T
(4)
x M) or at the level of deriva-

tions (in T
(2)
x M):

dFp(v) ∶ f ↦ v(f ○ F ).
Note that we cannot in general push forward an entire vector field, for the obvious reason

that if p, p′ ∈ F −1(q) then we may have dFp(Xp) ≠ dFp′(Xp′), in which case the pushforward of

X would simply not be well-defined. (There is also the question of smoothness...see below.)

Rather, we will work with the following notion.
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Definition 17.7. Let F ∶M → N be smooth, X ∈X (M), Y ∈X (N). We say that X and

Y are F -related if whenever q = F (p), we have

dFp(Xp) = Yq.

Example 17.8. Given a submanifold S ⊂ M, let ι denote the inclusion map, which is an

embedding. Supposing that X is tangent to S, the vector fields X ∣S and X are ι-related.

We will now generalize Corollary 17.3 to the situation of general F -related vector fields.

Lemma 17.9. Two vector fields X and Y are F -related if and only if for all f ∈ C∞(U),
U ⊂ N, we have

X(f ○ F ) = Y (f) ○ F.

Proof. Given p ∈M, we have

LHS(p) =Xp(f ○ F ) = dFp(Xp)(f).

RHS(p) = (Y (f))(F (p)) = YF (p)(f).

These are equal for all f if and only if dFp(Xp) = YF (p) for all p ∈M. □

Proposition 17.10. Suppose X1 and X2 are F -related to Y1 and Y2, respectively. Then

[X1,X2] is F -related to [Y1, Y2] .

Proof. Applying the Lemma twice, we have

X1(X2(f ○ F )) =X1(Y2(f) ○ F ) = Y1(Y2(f)) ○ F.

Similarly, X2(X1(f ○ F )) = Y1(Y2(f)) ○ F. Subtracting, we get

[X1,X2] (f ○ F ) = ([Y1, Y2] (f)) ○ F.

Since f was arbitrary, the other direction of the Lemma implies the claim. □

18. Descent of vector fields, quotient manifolds (Fri 10/11)

We will now describe a few situations where you can safely push forward a vector field.

This can be handy for constructing vector fields on quotient manifolds.

Proposition 18.1 (Smooth descent by submersions). Suppose that F ∶M → N is a surjec-

tive7 submersion. If X ∈X (M) is such that dFp(Xp) is constant on fibers (i.e. for all q ∈ N,
dFp(Xp) = dFp′(Xp′) for all p ∈ F −1(q)), then there exists Y ∈ X (N) (the “pushforward”)

that is F -related to X.

7If F is not surjective, one can simply replace N by the image of M, which is an open subset because

submersions are open maps.
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Proof. We can define a rough vector field Y on N by

Yq = dFp(Xp)

for any p ∈ F −1(q); this is well-defined by assumption. We can then check smoothness in any

coordinate chart. Since F is a submersion, there exist charts centered at p and q such that

F takes the form

F (x1, . . . , xn, y1, . . . , ym−n) = (x1, . . . , xn).
By definition, for 1 ≤ i ≤ n, we have

Y i(x1, . . . , xn) =X i(x1, . . . , xn,0, . . . ,0),

which is smooth by assumption. □

Corollary 18.2. One can always push forward a vector field by a diffeomorphism. In par-

ticular, the pushforward F∗X of X is given by

(18.1) (F∗X)q = dFF−1(q)(XF−1(q)).

Proof. Since F is a diffeomorphism, it is a submersion, and the well-definedness is automatic

since there is only one point in each fiber. The formula is gotten by taking p = F −1(q) in the

definition of F -relatedness. □

We now combine the previous two results into the form in which they are most commonly

used. It is convenient to make the following definition now; we will only discuss it more

thoroughly later on.

Definition 18.3. Suppose that a group G acts by diffeomorphisms on a smooth manifold,

M. We say that N is the quotient manifold of M by G, and write N = M/G, if there
exists a surjective submersion F ∶ M → N such that the fibers of F are equal to the orbits

of G, and in the diagram

M

��

F

""

M/G ∼
// N,

the bottom map is a homeomorphism.

Remark 18.4. A few comments on the previous definition.

● The condition that the fibers of F are equal to the orbits of G is really two condi-

tions: that G preserves the fibers (i.e. F (gx) = F (x) for all x ∈ M,g ∈ G) and acts

transitively on them (i.e. Gx = F −1(F (x)) for all x ∈M).

● It follows by Theorem 12.10, already proven above, that N is unique up to diffeo-

morphism, if it exists.

● Later, we plan to give some fairly general conditions on the group action guaranteeing

the existence of a smooth quotient manifold N. You have already shown on homework

that if the action is properly discontinuous then M/G has a smooth structure.
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Proposition 18.5. Let N = M/G be a quotient manifold as above, with F ∶ M → N the

(smooth) quotient projection. Suppose that X is a G-invariant vector field, i.e., g∗X =X for

all g ∈ G. Then X descends to a smooth vector field Y on the quotient that is F -related to

X.

Proof. Since in the definition of quotient manifold we assume that F is a surjective sub-

mersion, it remains only to check the well-definedness. Let p, p′ ∈ F −1(q). Since G acts

transitively on fibers, we have p′ = g(p) for some g ∈ G. Since X is G-invariant, we have

Xp′ =Xg(p) = dgp(Xp).
Since g preserves fibers, the diagram

M

F   

g
// M

F~~

N

commutes. We therefore have

dFp = dFg(p) ○ dgp.
Applying dFp′ to the previous, we get

dFp′(Xp′) = dFp′(dgp(Xp)) = dFp(Xp),
as desired. □

We’ll now describe two ways to use this proposition to write down vector fields on RPn.
Example 18.6. Think of RPn = Sn/ ± 1. Given a vector field X on Rn+1 that is tangent to

Sn and all of whose coefficients are odd, i.e.

X i(−x) = −X i(x),
we claim that X descends to a vector field on RPn. Let α ∶ x→ −x be the antipodal map on

Rn+1, whose differential is

dα = −Id
at all points. By formula (18.1), we have

(α∗X)x = dα−x (X−x)

= −∑X i(−x) ∂
∂xi

=X,
since the coefficients are odd functions. Since X is invariant under the antipodal map, it

descends.

This construction has the advantage that since the projection is a local diffeomorphism,

the projected vector field vanishes at [p] if and only if X vanishes at p.

Example 18.7. Think of RPn = Rn+1 ∖ {0}/R×, where R× = R ∖ {0} acts by scalar multipli-

cation. Given a vector field X on Rn+1 all of whose coefficients are linear, i.e. homogeneous

of order one, we claim that X descends to a vector field on RPn. (Note that X does not need

to be tangent to Sn.)
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Let αλ ∶ x↦ λx denote scalar multiplication. We have

dαλ = λId

at all points. By (18.1), we have

((αλ)∗X)x = d(αλ)λ−1x (Xλ−1x)

= λ∑X i(λ−1x) ∂
∂xi

=X,

since the coefficients are linear functions. Hence X descends.

This construction has the advantage that it works over C and gives holomorphic vector

fields on CPn. That discussion is for another class, however.

19. Integral curves and flows (Mon 10/14)

19.1. Integral curves. Recall that a tangent vector at p is equivalent to the derivative of

a path through p. Today we will describe the relationship between vector fields and paths.

Definition 19.1. Let X ∈X (M). Let J ⊂ R be an open interval. A path γ ∶ J →M is said

to be an integral curve of X if

γ′(t) =Xγ(t)

for all t ∈ J.
In a coordinate chart where γ(t) = (x1(t), . . . , xn(t))T and X = ∑X i ∂

∂xi
, we have γ′(t) =

∑ dxi

dt
∂
∂xi
, so the condition that γ is an integral curve amounts to

dx1

dt
=X1(x1(t), . . . , xn(t))

⋮
dxn

dt
=Xn(x1(t), . . . , xn(t)).

(19.1)

This is a system of ordinary differential equations in n variables. We have the following

classical result:

Theorem 19.2 (Picard’s local existence and uniqueness theorem). Let U ⊂ Rn be an open

set, and suppose given a set of smooth functions X1, . . . ,Xn on U. Given p ∈ U, there exists

ε > 0 and V ∋ p such that for all q ∈ V, there exists a unique solution γq(t) = (x1(t), . . . , xn(t))
of (19.1) with γ(0) = q and γq(t) ∈ U for t ∈ (−ε, ε). Moreover, γq(t) ∈ U depends smoothly

on (q, t) ∈ V × (−ε, ε).

Proof. If you haven’t seen this result before, have a look at Lee, Appendix C. The theorem

is proved by converting (19.1) to an integral equation and setting up a contraction mapping

problem, similar to what we did to prove the Inverse Function Theorem, except in the Banach

spaces Ck((−ε, ε),Rn). □
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The uniqueness in Picard’s theorem is crucial, because it allows us to globalize the result.

In class I stated this as self-evident, here I will put it as a separate corollary.

Corollary 19.3. Let X ∈ X (M). Given p ∈ M, there exists an open interval Ip ⊂ R,
containing zero, and unique maximal integral curve γp ∶ Ip → M of X with γp(0) = p. In
other words, given any other integral curve γ̃ ∶ J → M of X with γ̃(0) = p, we must have

J ⊂ Ip and γ̃(t) = γp(t) for t ∈ J.

Proof. First observe that given any two integral curves γ1(t) and γ2(t) on I1 and I2, respec-
tively, with γ1(0) = γ2(0) = p, we must have γ1(t) = γ2(t) on I1 ∩ I2. This requires only a

little bit of thought: let J ⊂ I1∩I2 be the set on which γ1 = γ2. Looking in a coordinate chart

around p, by the uniqueness in Picard’s theorem, we must have J ∋ 0, so J is nonempty. It is

also open for the same reason, and closed in I1∩I2 since γ1(t) and γ2(t) are both continuous.

Hence J = I1 ∩ I2.
This allows us to define γp(t) to the “union” of all integral curves through p, which is

maximal by definition. □

Note that Ip and γp so defined clearly have the following properties:

(19.2) γγp(t)(s) = γp(t + s)

Iγp(t) = Ip − t
Last, if X and Y are F -related, then F ○ γp is an integral curve of Y through F (p). This
follows from the chain rule.

By the theorem above, we know that integral curves always exist locally, but it is instruc-

tive to calculate some explicit examples.

Example 19.4. Take M = Rn. Given any n × n matrix A = (Aij) , we can write down a

so-called linear vector field

X = ∑
i,j

Aijx
j ∂

∂xi
.

The corresponding system of ODEs is

dx

dt
= A ⋅ x,

and we have

γp(t) = exp(At) ⋅ p
for every p ∈ Rn. Thus Ip = R for all p and each γp(t) exists globally. (This is true more

generally for vector fields/ODE systems on Rn with sub-linear growth.)

Example 19.5. For a specific case of the previous example, take

A = (0 −1
1 0

) .

The corresponding vector field is

X = x ∂
∂y
− y ∂

∂x
.
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The integral curve through (x0, y0)T is

γ
(x0
y0
)
(t) = (cos t − sin t

sin t cos t
) ⋅ (x0

y0
) .

We have

γ′
(x0
y0
)
(t) = (− sin t − cos t

cos t − sin t) ⋅ (
x0
y0
) = (0 −1

1 0
) ⋅ γ

(x0
y0
)
(t)

as required. The integral curve travels around in a circle with constant velocity equal to the

radius.

Example 19.6. On M = R, take X = x2 ∂
∂x . The ODE dx

dt = x2 can be solved by separation

of variables, giving the integral curves

γx(t) =
1

x−1 − t
for x ≠ 0, and γ0(t) ≡ 0. Notice that these are not globally defined, but rather

Ix =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−∞, x−1) x > 0
R x = 0
(x−1,∞) x < 0.

19.2. Flows. We now change our perspective on the above. Let

D = ∪p∈MIp × {p} ⊂ R ×M.

A union of intervals of this kind, each containing zero, is called a flow domain. We can

define a map

θ ∶ D →M

θt(p) = γp(t).
Notice that we have simply changed the order of the variables in the integral curves γ⋅(⋅).
The map θ is called the flow associated to X, and satisfies the group-action-like properties

θ0 = IdM
and, from (19.2),

θs ○ θt = θs+t
wherever the composition is defined. If D = R ×M, then the transformations θt do form a

globally defined R-action on M, called a one-parameter family of diffeomorphisms. We will

give the general version of this statement below. Conversely, given θ of this form, X = ∂θ
∂t
∣
t=0

is called the infinitesimal generator of the flow θ.

Example 19.7. In Example 19.5 above, we have

θt (
x

y
) = (x cos t − y sin t

x sin t + y cos t) .

The flow is simply given by counterclockwise rotation on R2 by angle t.
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The following summarizes the correspondence between vector fields and flows.

Theorem 19.8 (Fundamental Theorem on Flows). Given X ∈X (M), there exists an open

set D ⊂M, containing {0} ×M, and a smooth map θ ∶ D → R ×M, such that

(19.3) D ∩ (R × {p}) = Ip,
the maximal interval of definition of γp (see above), and

(19.4) θt(p) = γp(t)
for all (t, p) ∈ D . Moreover, letting

(19.5) Mt = D ∩ ({t} ×M) ⊂M,

θt defines a diffeomorphism

(19.6) θt ∶Mt
∼→M−t.

Proof. We take (19.3-19.4) as our definition of θ. It remains to check that D is open, θ is

smooth on D , and θt defines a diffeomorphism as in (19.6).

Let W ⊂ D be the set of all (t, p) ∈ D for which there exists an interval J ⊂ R containing

0 and t, and an open neighborhood U ∋ p, such that J ×U ⊂ D and θ∣J×U is smooth. Clearly

W is open in R ×M. So it suffices to show that W = D .
Suppose for the sake of contradiction that W ⊊ D , and let (t0, p0) ∈ D ∖W. First note

that by Picard’s Theorem, {0} ×M ⊂W. Assume that t0 > 0, since the other case is similar.

Without loss of generality, we can assume that t0 is the smallest positive value such that

(t0, p0) ∈ D ∖W (by openness of W ).

Let p = θt0(p0) ∈ M. Again by Picard’s Theorem, there exists V ∋ p and ε > 0 such that

the flow θs is smooth on (−ε, ε) × V.
Meanwhile, since (t0 − ε

2 , p0) ∈ W, there exists J,U such that θt is smooth on J × U, with
J ⊂ [0, t0 − ε

2
] .

Define U0 = θt0− ε
2
∣−1
U
(V ) ⊂ U, which is open. On U0 × (0, t0 + ε) we can write θt as a

composition of smooth functions

θt(p) = θt−t0+ε/2 ○ θt0−ε/2(p).
But this shows that (t0, p0) ∈W, which is a contradiction. We conclude that W = D .
To prove (19.6), note that the image of the map θt ∶Mt →M must be contained in M−t,

because any trajectory can be flown backwards to its initial point. In fact, θ−t ∶M−t →Mt is

a smooth inverse of θt, so the map is a diffeomorphism. □

Example 19.9. In Example 19.6, where X = x2 ∂
∂x , we have

D = {(t, x) ∣ tx < 1}.
For t > 0, this gives

Mt = (−∞,
1

t
)

and

M−t = (−
1

t
,∞) .
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So, according to the theorem, we have a diffeomorphism

θt ∶ (−∞,
1

t
) → (−1

t
,∞) .

This is a rather interesting diffeomorphism, in that it crunches one side of the interval in

from infinity while stretching the other side out to infinity. The formula is just

θt(x) =
x

1 − tx.

20. Properties of flows (Wed 10/16)

Here we will prove some simple facts about flows that may be needed later.

Proposition 20.1. Let X ∈X (M) and Y ∈X (N) and suppose that X and Y are F -related.

Let θt and ηt be the flows of X and Y, respectively. We have a commutative diagram:

Mt

θt
��

F
// Nt

ηt
��

M−t
F
// N−t

.

Proof. By the chain rule and F -relatedness, the path t ↦ (F ○ θt) (p) is an integral curve of

Y starting at F (p). On the other hand, so is ηt(F (p)) = (ηt ○ F ) (p), so the two must be

equal. This shows both that the image of the top and bottom maps are contained in Nt and

N−t, respectively, and that the diagram commutes. □

Corollary 20.2. If F ∶ M → M is a diffeomorphism, then the flow of F∗X is given by

F ○ θt ○ F −1.

Proof. Let ηt be the flow of F∗X, which is F -related to X by definition. By the previous

proposition, we have

ηt ○ F = F ○ θt.
Precomposing both sides with F −1 yields the result. □

Definition 20.3. A point p ∈ M is called a regular point of X if Xp ≠ 0. If Xp = 0, p is

called a singular point.

Note that the terminology has nothing to do with smoothness of X, which we always

assume.

Also note that p is a singular point if and only if θt(p) ≡ p for all t ∈ R, since this is the

unique integral curve through p.

Lemma 20.4. Suppose p is a regular point of X. There exists a coordinate system {s1, . . . , sn}
near p such that X = ∂

∂s1 . Given any hypersurface S passing through p for which Xp /∈ TpS,
we can further choose the coordinates so that S = {s1 = 0}.
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Proof. Let U = {x1, . . . , xn} be a slice chart for S, in which S = {x1 = 0}. We may assume

without loss of generality that X does not vanish on U. Define a smooth map from a neigh-

borhood V of the origin in Rn to U by

Φ ∶ (s1, . . . , sn) ↦ θs1(0, s2, . . . , sn) ∈ U.

Since the curves (t, s2, . . . , sn) are sent to integral curves of X, we have

dΦp (
∂

∂s1
) =X

for all p ∈ V. At the origin, for i > 1, we have

dΦ0 (
∂

∂si
) = ∂

∂xi

by construction. Since X and { ∂
∂xi
}i>1 are linearly independent at the origin, the inverse

function theorem tells us that Φ is also a coordinate system. It has the required properties

by construction. □

We now address the (thorny) question of the domain D , which may prevent θt from giving

a globally defined R-action.
Definition 20.5. A vector field X is complete if D = R ×M, or equivalently, if Ip = R for

all p ∈M (i.e. every integral curve is complete).

Lemma 20.6. Suppose K ⊂M is compact. There exists ε > 0 and an open set U ⊃ K such

that (−ε, ε) ×U ⊂ D . In particular, K ⊂Mt for all t ∈ (−ε, ε).

Proof. Since D is open, we can cover {0}×K by a finite collection of neighborhoods (−εi, εi)×
Ui (since these form a basis for the product topology on R ×M). Let ε = min εi and U =
∪Ui. □

Proposition 20.7. Suppose that X ∈X (M) has compact support. Then X is complete.

Proof. Put K = suppX and let ε > 0 be as in the Lemma. We have K ⊂Mt for all t ∈ (−ε, ε) .
Furthermore, since X vanishes identically on M ∖K, the latter is contained in Mt for all

t ∈ R. We conclude that M =Mt for all t ∈ (−ε, ε) .
Given L ∈ R+, choose N large enough that Nε > L. For s ∈ (−L,L) , we can write

θs =
N

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
θs/N ○ ⋯ ○ θs/N .

This shows that θs is well-defined and smooth on (−L,L)×M. Since L was arbitrary, we are

done. □

Corollary 20.8. Every vector field on a compact manifold is complete.

The flow construction therefore gives an easy way to produce global 1-parameter families

of diffeomorphisms on compact manifolds.

On the other hand, the following confirms our intuition that an integral curve can be

continued until it “runs off the manifold.”
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Proposition 20.9. Suppose M is noncompact. If p ∈M is a point such that Ip = (a, b), with
b < ∞, then the image γp ([0, b)) fails to be contained in any compact subset of M.

Proof. (Omitted during class.) We prove the contrapositive. Suppose that γ is an integral

curve of X with γ(0) = p and γ ([0, b)) ⊂K for some compact set K ⊂M. Choose a compact

set K ′ with K ⊂ (K ′)○ , and let φ be a compactly supported bump function for K ′. Take

X̃ = φX, which agrees with X on K ′, and let γ̃ ∶ R→M be the (complete) integral curve of

X̃.We have γ = γ̃ on [0, b) by uniqueness. But γ̃(t) is also contained in (K ′)○ for t ∈ [b, b + ε) ,
for some ε > 0, and on this interval it remains an integral curve of X. This shows that γ was

not maximal. □

21. The Lie derivative (Wed 10/16-Fri 10/18)

Recall that we have not yet attempted to answer the question: what is the derivative of a

vector field? The question is tricky because it requires comparing tangent vectors at different

(although nearby) points in the manifold. One way to do this is using the flow construction.

Definition/Lemma 21.1. Given X,Y ∈ X (M), let θt be the flow of X. Define the Lie

derivative of Y with respect to X by:

(21.1) (LXY )p = limt→0

Yθt(p) − (dθt)p Yp
t

,

where the limit is taken with respect to the topology on TM. The limit exists for every p ∈M
and defines a smooth vector field on M equal to

(21.2)
d

dt
∣
t=0
(θ−t)∗ Y.

Proof. Since θ is smooth in all variables, the expression (21.2) gives a smooth vector field on

M. We need only show that (21.2) and (21.1) are equal. Using the formula (18.1) and the

fact that θt = θ−1−t , we have

(21.2)p = lim
t→0

(dθ−t)θt(p) Yθt(p) − Yp
t

.

By continuity of θt, we have

lim
t→0
(dθt)p = Id.

We may insert this into the limit to obtain:

(21.2)p = lim
t→0
(dθt)p

(dθ−t)θt(p) Yθt(p) − Yp
t

= lim
t→0

(dθt)p (dθ−t)θt(p) Yθt(p) − (dθt)p Yp
t

= lim
t→0

Yθt(p) − (dθt)p Yp
t

= (21.1)p.

□
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It turns out that the Lie derivative of a vector field is not a new object.

Theorem 21.2. LXY = [X,Y ] .
Proof. Case 1. Suppose p is a regular point. By Lemma 20.4, we may choose coordinates

such that

X = ∂

∂x1
.

Then the flow of X is given by

θt(x1, . . . , xn) = (x1 + t, x2, . . . , xn) .
In particular, definition (21.1) just agrees with the usual definition of partial derivative in

the x1-direction, so we have

LXY =
∂Y

∂x1
,

where the RHS is to be understood in local coordinates. On the other hand, by the local

formula (16.4), where X corresponds to the constant vector field (1,0, . . . ,0), we also have

[X,Y ] = ∂Y
∂x1

.

So the two agree.

Case 2. p ∈ SuppX. If p belongs to the closure of the set of regular points of X, then the

two sides are equal for points arbitrarily close to p. But each side is a continuous vector field,

so the two must also agree at p.

Case 3. p /∈ SuppX. In this case, there exists a neighborhood W ∋ p such that X ∣W ≡ 0.
The flow of X is identically constant on this neighborhood, so the Lie derivative is zero.

Meanwhile the Lie bracket also clearly vanishes. □

Corollary 21.3. (a) LXY = −LYX

(b) LX [Y,Z] = [LXY,Z] + [Y,LXZ] .

(c) L[X,Y ]Z =LXLYZ −LY LXZ.

(d) For f, g ∈ C∞(M), we have

LfX(gY ) = fgLXY + fX(g)Y − gY (f)X.

(e) Suppose that X1, Y1 are F -related to X2, Y2, respectively. Then LX1Y1 is F -related to

LX2Y2.

(f) If F is a diffeomorphism then we have

F∗LXY =LF∗XF∗Y.

Proof. These all follow from the already-established properties of the Lie bracket. For ex-

ample, (c) and (d) just rephrase the Jacobi identity as in (16.3).8 □
8On the other hand, one can give a proof of the Jacobi identity directly from the definition (21.1), as you

will do on homework. This gives an “explanation” for the Jacobi identity based on the fact that the Lie

bracket is indeed a kind of derivative.
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Remark 21.4. Despite the fact that we already knew the Lie bracket, the reinterpretation

as Lie derivative is extremely useful. Let’s also point out that the Lie derivative makes sense

on functions and agrees with the derivative that we already know:

(LXf)p = limt→0

f(θt(p)) − f(p)
t

= lim
t→0

f(γp(t)) − f(p)
t

= (f ○ γp)′ (0)
=Xp(f).

So the Lie derivative on functions is just the ordinary derivative:

LXf =X(f).

Later we will define the Lie derivative on general tensors, in particular on differential forms

where it is most useful.

22. Commuting vector fields (Fri 10/18-Mon 10/21)

We now continue to discuss the relationship between brackets and flows. The following

Lemma shows that the definition (21.2) also works away from t = 0.

Lemma 22.1. For all t0 such that (p, t) ∈ D , we have

d

dt
∣
t=t0
(θ−t)∗ Y = (θ−t0)∗LXY.

Proof. Using the chain rule, we have

LHS = d

dt
∣
t=t0
(θ−t0 ○ θt−t0)∗ Y

= (θ−t0)∗
d

dt
∣
t=t0
(θt−t0)∗ Y.

Setting s = t − t0, we can identify the inside limit as LXY. □

Proposition 22.2. TFAE:

(a) X and Y commute (i.e. [X,Y ] = 0)

(b) Y is invariant under the flow of X

(c) X is invariant under the flow of Y.

Proof. (b) ⇒ (a) is obvious from the definition (21.1), since the difference quotient vanishes

identically. The same goes for (c) ⇒ (a), since [Y,X] = − [X,Y ] .
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To show (a) ⇒ (b), assume that LXY = 0. By the previous lemma, we have

d

dt
(θ−t)∗ Y = (θ−t)∗LXY = 0.

So (θ−t)∗ Y = Y for all t, i.e. Y is invariant under the flow of X. (a) ⇒ (c) is the same. □

Corollary 22.3. Every vector field is invariant under its own flow.

Corollary 22.4. X and Y commute if and only if their respective flows θt and ηs commute,

assuming they are defined on the rectangle [0, t] × [0, s] .9

Proof. (⇒) It suffices to show that the curve

t↦ (ηs ○ θt)(p)
is an integral curve of X. For, t ↦ (θt ○ ηs) (p) is also an integral curve of X by definition;

since both begin at ηs(p), they must be equal for all t, giving ηs(θt(p)) = θt(ηs(p)).
To this end, we calculate

d

dt
(ηs ○ θt) (p) = (ηs)∗

d

dt
(θt(p)) = (ηs)∗Xθt(p)

By the previous Lemma, since X and Y commute, X is invariant under the flow of Y, i.e.

(ηs)∗X =X. In particular, the RHS is equal to Xηs(θt(p)). This shows that t↦ (ηs ○ θt)(p) is
an integral curve of X, so we are done.

(⇐) Assume that the flows commute, so θt ○ ηs = ηs ○ θt. We calculate

Yθt(p) =
d

ds
∣
s=0
ηs(θt(p)) =

d

ds
∣
s=0
(θt(ηs(p))) = (dθt)p Yp.

By the definition (21.1), this implies LXY = 0. □

We now come to the following important generalization of Lemma 20.4. This provides an

answer to the question: when is a collection of vector fields equal to the coordinate vector

fields in some system of coordinates? A necessary condition is that these vector fields all

commute, since this is automatically true of coordinate vector fields. The theorem says that

this is also sufficient.

Theorem 22.5. Let X1, . . . ,Xk, k ≤ n, be a collection of commuting vector fields ([Xi,Xj] =
0 for all i, j) which are linearly independent at p ∈M. There exists a local coordinate system

{s1, . . . , sn} near p such that

Xi =
∂

∂si

for i = 1, . . . , k. If S is any codimension k submanifold near p for which TpS is complementary

to ⟨(X1)p , . . . , (Xk)p⟩ , we may further choose the coordinates so that S = {si = 0, i = 1, . . . , k}.
Proof. The proof is a simple generalization of the proof of Lemma 20.4. Let U = {x1, . . . , xn}
be a slice chart for S, in which S = {x1 = . . . = xk = 0}. (If no S is given, choose S to be

a coordinate plane in an appropriate coordinate chart.) Let θi be the flow of Xi. Define a

smooth map from a neighborhood V of the origin in Rn to U by

Φ(s1, . . . , sn) = θ1s1 ○ θ2s2 ○ ⋯ ○ θksk(0, . . . ,0, sk+1, . . . , sn) ∈ U.
9See Lee, p. 232-3 for a precise statement.
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For i ≤ k, we have

∂Φ

∂si
= ∂

∂si
θ1s1 ○ θ2s2 ○ ⋯ ○ θksk(0, . . . ,0, sk+1, . . . , sn)

= d

dsi
(θisi ○ θ1s1 ○ ⋯ ○ θ̂isi ○ ⋯ ○ θksk (0, . . . ,0, sk+1, . . . , sn)) ,

since the θi’s commute. Since θisi is the flow of Xi, this gives us

∂Φ

∂si
= (Xi)θi

si
○θ1

s1
○⋯○θ̂isi○⋯○θ

k
sk
(0,...,0,sk+1,...,sn)

= (Xi)Φ(s1,...,sn).
This translates to

(22.1) Φ∗
∂

∂si
=Xi.

At the origin, for j > k, we have

∂Φ

∂sj
∣
0

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0

⋮
1

⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

by construction, where the 1 is in the j’th row. In other words,

Φ∗
∂

∂sj
∣
p

= ∂

∂xj
.

Since {(X1)p, . . . , (Xk)p, ∂
∂xk+1

, . . . , ∂
∂xn} are linearly independent at the origin, the inverse

function theorem tells us that Φ (or more accurately, Φ−1) is a coordinate system. Then

(22.1) translates to

(Φ−1)∗Xi =
∂

∂si

for i ≤ k, as required. □

Remark 22.6. There is an important generalization called the Frobenius theorem, which

provides an answer to the question: when is a collection of vector fields X1, . . . ,Xk locally

tangent to a (family of) k-dimensional submanifold(s)? We hope to discuss this later once

we have more machinery available.
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Part 5. Lie groups and Lie algebras

23. Definition and examples (Mon 10/21)

Definition 23.1. A topological group is a topological space G endowed with continuous

maps

m ∶ G ×G→ G

(g, h) ↦ g ⋅ h

and

i ∶ G→ G

g ↦ g−1

which give G the structure of a group. G is further called a Lie group if it is a smooth

manifold and these maps are smooth.

Examples 23.2. 1. (V,+), where V is a finite-dimensional vector space with its canon-

ical smooth structure (Example 3.5)).

2. K× =K ∖ {0} under multiplication, where K = R or C.

3. S1 ⊂ C×.

4. T n = S1 ×⋯ × S1.

5. GL(n,K) (see Example 3.6).

6. GL+(n,K) ⊂ GL(n,K), the set of matrices with positive determinant.

7. The group of invertible upper-triangular matrices.

8. SL(n,K) ∶= {A ∈ GL(n,K) ∣ det(A) = 1}. This is clearly a subgroup; to prove that it

is a Lie group, it is sufficient to prove that it is a smooth submanifold, i.e. that 1 is

a regular value of the function det(⋅) ∶ GL(n,K) →K.

Let A ∈ GL(n,K). Denote bymi
j the determinant of the i, j’th minor of the matrix

A, i.e. the (n−1)×(n−1) matrix obtained by deleting the i’th row and j’th column.

Fixing i, we can calculate the determinant using expansion by minors:

det(A) = (−1)i+1ai1mi
1 + (−1)i+2ai1mi

2 +⋯ + (−1)i+nainmi
n.

Notice that mi
k does not involve aij for any k. We therefore have

∂ detA

∂aij
= (−1)i+jmi

j.

In particular, A is a critical point of det(A) (i.e. all partials vanish) if and only

if all minors vanish. In this case the above formula implies that det(A) = 0. But

then A /∈ SL(n,K). So det(⋅) satisfies the Jacobian criterion on SL(n,K), which is

therefore a smooth manifold of dimension n2 − 1 (K = R) or 2(n2 − 1) (K = C).
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9. O(n) ∶= {A ∈ GL(n,R) ∣ ATA = In}. This is the subgroup of orthogonal matrices. We

must check that the defining equation ATA = In has full rank. In fact, it only has

full rank considered as a map to the n(n + 1)/2-dimensional subspace of symmetric

matrices:

f ∶ GL(n,R) → Sn = {A ∈Mn×n
R ∣ AT = A}

A↦ ATA.

To show that A is a regular point, we calculate

dfA(X) =XTA +ATX.

Given B ∈ Sn, we must exhibit X such that dFA(B) = X. In fact, it is sufficient to

solve

ATX = 1

2
B,

since then also

XTA = (ATX)T = 1

2
BT = 1

2
B.

Since det(A) = ±1, we can take

X = 1

2
(AT )−1B.

We have shown that O(n) is a closed submanifold of dimension

n2 − n(n + 1)/2 = n(n − 1)
2

.

It is in fact compact, because TrATA = n is the sum of the norms of the columns.

10. The same argument works over C, replacing AT by A† and Sn by the space of Her-

mitian matrices. This gives the Unitary Group U(n).

11. Since det(A) = ±1 on O(n), the set with det(A) = 1 is an open submanifold /

subgroup, called the Special Orthogonal Group SO(n).

12. Any countable group with the discrete topology.

24. Lie-group actions, homomorphisms, subgroups (Wed 10/23)

Today we shall upgrade several standard group-theoretic notions to the world of Lie groups.

This is usually just a question of adding “smooth” somewhere in the definition, but the

consequences of doing so can be nontrivial.
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24.1. Lie-group actions.

Definition 24.1. Recall that a (left) group action by a group G on a space M is a map

G ×M →M

(g, p) ↦ g ⋅ p

which satisfies

● e ⋅ p = p

● g ⋅ (h ⋅ p) = (gh) ⋅ p

for all p ∈M. If G acts on the left on M, we write G↻M.

Supposing that G is a Lie group and M is a smooth manifold, the action is further called

a Lie-group action if the above map is smooth.

A right Lie group action is defined in a similar way, except that the above equations are

replaced by

M ×G→M

(p, g) ↦ p ⋅ g

and

● p ⋅ e = p

● (p ⋅ g) ⋅ h = p ⋅ (gh).

By default, our actions will be left-actions. One can convert a right-action into a left-action

by replacing the action of g by that of g−1.

Note that for each g ∈ G, the map p ↦ g ⋅ p is a diffeomorphism of M, since its inverse is

given by the action of g−1.

The orbit of p ∈M is denoted G ⋅ p = {g ⋅ p ∣ g ∈ G}.
The isotropy group or stabilizer of p ∈M is denoted Gp = {g ∈ G ∣ g ⋅ p = p}.
The action is said to be transitive if G ⋅ p = M for all (or any) p ∈ M. Observe that for

a transitive group action and any p, q ∈M, the stabilizers Gp and Gq are conjugate, and in

particular are isomorphic as Lie groups.

The action is said to be free if Gp = {e} for all p ∈M.

Examples 24.2. 1. GL(n,K) ↻Kn by definition. The orbits are Kn ∖ {0} and {0}.

2. O(n) ↻ Rn. The orbits are the spheres Snr , r > 0 and the point {0}.

3. Let X be a complete vector field on M. This generates an action of R on M by:

(t, p) ↦ θt(p),

as explained above. The orbits are the images of integral curves in M.
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4. Every Lie group acts on itself both by left and by right-multiplication. These actions

are denoted with special symbols: given g ∈ G, we write

Lg ∶ G→ G

h↦ g ⋅ h
Rg ∶ G→ G

h↦ h ⋅ g.
It is clear that Lg1 ○ Lg2 = Lg1g2 , so this is a left-action, while Rg is a right-action.

Note that unless the group is abelian, these are genuinely different actions and cannot

simply be interchanged by the standard conversion g ↦ g−1.

These actions are both free and transitive.

5. For an example of a different flavor, recall that the universal cover M̃ →M is again

a smooth manifold. By a theorem from Lee, π1(M,p) is countable, so is a Lie group

with the discrete topology. This acts on M̃ by smooth deck transformations, giving

a properly discontinuous Lie-group action; in fact, M is just the quotient manifold

M̃/π1(M,p).

24.2. Lie-group homomorphisms. Let G and H be Lie groups. A map F ∶ G → H is

called a Lie-group homomorphism if it is a smooth group homomorphism, i.e.

F (g1g2) = F (g1)F (g2).

It is called an isomorphism if it is also a diffeomorphism (in which case the inverse is also

a homomorphism). The kernel kerF = F −1(e) is the inverse image of the identity element

in H.

Examples 24.3. 1. exp ∶ (R,+) → (R×, ⋅) is a Lie-group isomorphism. exp ∶ (C,+) →
(C×, ⋅) is a local diffeomorphism with kernel 2πiZ.

2. det ∶ GL(n,K) →K× is a Lie group homomorphism. Its kernel is SL(n,K).

3. Conjugation by a fixed element g ∈ G is an invertible Lie-group homomorphism

from G to itself (a.k.a an automorphism):

Cg = Lg ○Rg−1 ∶ G→ G

h↦ ghg−1.

The map G ×G→ G by (g, h) ↦ Cg(h) is also a left-action of G on itself.

Theorem 24.4. Every Lie-group homomorphism has constant rank.

Proof. Let F ∶ G → H be a Lie-group homomorphism and let e ∈ G, ẽ ∈ H be the respective

identity elements. Let g0 ∈ G. It suffices to show that the rank of dFg0 is equal to that of

dFe. Letting Lg0 be left translation by g0, we have for all g ∈ G ∶

F (Lg0(g)) = F (g0g) = F (g0)F (g) = LF (g0)(F (g)).

In other words

F ○Lg0 = LF (g0) ○ F.
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Taking the derivative and applying the chain rule, we have

(24.1) dFg0 ○ (dLg0)e = (dLF (g0))ẽ ○ dFe.
But (dLg0)e and (dLF (g0))ẽ are both isomorphisms, so this shows that dFg0 and dFe have

the same rank, as desired. □

Corollary 24.5. A Lie-group homomorphism is surjective (resp. bijective) if and only if it

is a submersion (resp. isomorphism).

Proof. It follows by contradiction from the Baire category theorem (HW/Lee’s book) that a

surjective map of constant rank in fact must have full rank, i.e. must be a submersion. If it

is also bijective then the dimensions must be equal, making it a diffeomorphism. □

24.3. Lie subgroups. A Lie subgroup of G is a pair (H,φ) where H is a Lie group and

φ ∶H → G is an injective immersion that is also a Lie-group homomorphism.

If φ is an embedding then H is called an embedded Lie subgroup,10 and in this case we

identify H with its image φ(H) ⊂ G, which is a submanifold, and omit the inclusion map φ.

Notice that H is an embedded Lie subgroup if and only if it is a submanifold which is closed

under the group operations of G. We shall be almost exclusively concerned with embedded

Lie subgroups in this class.

Examples 24.6. 1. O(n) ⊂ GL(n,R) and U(n) ⊂ GL(n,C) are embedded Lie sub-

groups, as we showed last class.

2. SO(n) ⊂ O(n) is the inverse image of +1 under det, which is an open submanifold,

so an embedded Lie subgroup of index two.

3. Given any Lie group G, let G0 be the connected component which contains the

identity element e. By Proposition 2.3, this is both closed and open in G, so is an

open submanifold. It is also closed under multiplication, because G0×G0 is connected

and the image of the multiplication map

G0 ×G0 → G0 ⊂ G
must land in the connected component of the identity; similarly for the inversion

map. So G0 ⊂ G is a properly embedded Lie subgroup (of the same dimension).

In particular, one can show that SO(n) is the identity component of O(n), and
GL+(n,R) is the identity component of GL(n,R).

4. For an example of a non-embedded Lie subgroup, consider H = R and define the

homomorphism

φ ∶ R→ T2

t↦ (e2πit, e2πiαt)
10An embedded Lie subgroup is more frequently called a closed (Lie) subgroup because of Theorem

24.9 below.
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for an irrational number α. The image is in fact dense in T2.

Proposition 24.7. For any Lie-group homomorphism F ∶ G → H, the kernel kerF is a

properly embedded (i.e. closed) normal Lie subgroup of G.

Proof. By Theorem 24.4, F has constant rank, so every fiber is properly embedded by The-

orem 13.11. The kernel of any homomorphism is a normal subgroup, so we are done. □

Example 24.8. ● The proposition gives another proof that SL(n,K) is an embedded

Lie subgroup of GL(n,K). Since det is surjective onto K×, it is a submersion by

Corollary 24.5, so SL(n,K) ⊲ GL(n,K) has codimension one if K = R and two if

K = C.

● A unitary matrix A satisfies A†A = In. Since detAT = detA, we have detA† = detAT =
detAT = detA. Taking the determinant of each side of A†A = In, we have

∣detA∣2 = 1.

Hence, the determinant defines a Lie-group homomorphism

det ∶ U(n) → U(1) ⊂ C×,

which is surjective. Let

SU(n) ∶= kerdet(⋅) ⊲ U(n).

This is a (real) codimension one properly embedded Lie subgroup.

We now mention a result that allows us to dispense with saying “properly” every time we

say “embedded Lie subgroup;” instead we shall usually say “closed Lie subgroup.” (In fact,

even saying “Lie” is not necessary: see Lee Theorem 20.12.) Since all of the Lie subgroups

that we consider are properly embedded by definition, we will not prove the result, but it is

good to know about.

Theorem 24.9. Suppose (H,φ) is a Lie subgroup of G. Then φ(H) is closed in G if and

only if φ is an embedding. In particular, every embedded Lie subgroup is properly embedded.

Proof. See Lee, Theorem 7.21. The main idea is that because G acts transitively on itself by

diffeomorphisms, the whole picture can be reduced to the picture near the identity, where

one can work in a fixed slice chart. □

25. The Equivariant Rank Theorem (Fri 10/25)

Today we will give another, more modern, method to construct the classical groups

O(n),U(n),SU(n), etc. While the method is elegant enough to be worth doing for its

own sake, it will also bring us closer to the right perspective on Lie groups.
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Definition 25.1. Suppose that G↻θ M and G↻φ N are two different Lie group actions

which we call θ and φ, respectively, to keep them straight. This means that each g ∈ G acts

by diffeomorphisms θg ∶M →M and φg ∶ N → N.

A smooth map F ∶M → N is said to be equivariant with respect to these two actions if

F (θg(p)) = φg (F (p))

for all g ∈ G and p ∈M. In other words, F ○ θg = φg ○ F, i.e., the diagram

(25.1) M
F
//

θg
��

N

φg

��

M
F
// N

commutes. Sometimes one says that F intertwines the two actions. If θ = φ, one often says

that F commutes with the action.

Examples 25.2. 1. Let M = N = G and take both θ and φ to the action of G on itself

by left-multiplication. Fix g0 ∈ G, and let F = Rg0 ∶ G → G. We claim that F is

equivariant:

Rg0(g ⋅ h) = (g ⋅ h) ⋅ g0 = g ⋅ (h ⋅ g0) = g ⋅Rg0(h).

In other words, left and right-multiplication “commute” with each-other. (Funnily

enough, this is another way of stating the associative property of group multiplica-

tion.)

2. Let F ∶ G→H be a group homomorphism. Let G act on itself by left-multiplication,

and define an action G↻H by:

g ⋅ h = F (g)h.

Let’s check that this is a group action:

g1 ⋅ (g2 ⋅ h) = g1 ⋅ (F (g2)h) = F (g1)F (g2)h = F (g1g2)h = (g1g2) ⋅ h.

Then F is an intertwiner because

F (g1g2) = F (g1)F (g2) = g1 ⋅ F (g2).

So we see that a homomorphism is an equivariant map for a certain choice of group

action.

We have the following generalization of Theorem 24.4.

Theorem 25.3 (Equivariant Rank Theorem). Let G ↻θ M and G ↻φ N be Lie group

actions, and suppose that θ is transitive. Any equivariant smooth map F ∶ M → N has

constant rank.

In particular, if F is surjective then it is a submersion; if F is injective then it is an

immersion; if F is bijective then it is a diffeomorphism.
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Proof. Let p, q ∈ M be arbitrary. By transitivity, we can choose g ∈ G such that θg(p) = q.
Applying the functor d(⋅), the diagram (25.1) goes over to

TpM
dFp
//

(dθg)p
��

TF (p)N

(dφg)F (p)
��

TqM
dFq
// TF (q)N.

Since (dθg)p and (dφg)F (p) are isomorphisms, the rank of dFp must equal that of dFq.

The remaining statements are true of all constant-rank maps. □

As a first application, for p ∈M, consider the orbit map

θ(p) ∶ G→M

g ↦ g ⋅ p.
This map is equivariant fromG with its left-multiplication action toM. Since left-multiplication

is transitive, the previous theorem gives

Corollary 25.4. ● For any p ∈ M, the stabilizer Gp = (θ(p))−1(p) is a closed Lie sub-

group.

● Suppose Gp = {e} for some p ∈M. Then θ(p) ∶ G→M is an injective immersion.

Next, we will use the Equivariant Rank Theorem to construct our favorite Lie groups

again while also calculating their dimensions in an easier way.

Example 25.5. Recall that O(n) = {A ∈ GL(n,R) ∣ ATA = In}. Define
Φ ∶ GL(n,R) →Matn×nR

A↦ ATA.

Let GL(n,R) act on itself by right-multiplication, and act on X ∈Matn×nR by:

X ⋅B = BTXB.

We have

Φ(AB) = (AB)TAB = BTATAB = BTΦ(A)B = Φ(A) ⋅B,
so Φ intertwines the two actions. By the equivariant rank theorem, O(n) = Φ−1(In) is a

closed Lie subgroup of GL(n,R) (indeed it is closed in Matn×nR ).

To determine the dimension of O(n), we need only calculate the tangent space at the

identity element e = In. Since
dΦIn(X) =XT In + ITnX =XT +X,

we have

TeO(n) = {X ∈Matn×nR ∣XT = −X} =∶ o(n).
This is the subspace of skew-symmetric matrices, which has dimension

dim o(n) = dimO(n) = n(n − 1)
2

.
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Example 25.6. Generalizing the previous example, let J be any n×n real matrix and define

Φ(A) = ATJA.

The last proof shows that {A ∈ GL(n,K) ∣ ATJA = J} is a Lie group. For instance,

letting J be a symmetric matrix of signature (p, q), we obtain the group O(p, q) of linear
transformations preserving a symmetric bilinear form of signature (p, q). You will calculate its

dimension on homework. A well-known example is the 6-dimensional Lorentz group O(1,3)
which arose in the special theory of relativity.

Example 25.7. Recall that U(n) = {A ∈ GL(n,R) ∣ A†A = In}. Define

Φ ∶ GL(n,R) →Matn×nC

A↦ A†A.

Let GL(n,R) act on itself by right-multiplication, and act on X ∈Matn×nR by:

X ⋅B = B†XB.

As above, Φ is an intertwiner, so U(n) is a closed Lie subgroup of GL(n,C) (indeed it is

closed in Matn×nC ). The tangent space at the identity is

TeU(n) = {X ∈Matn×nC ∣X† = −X} =∶ u(n).

This is the subspace of skew-Hermitian matrices, of the form

⎛
⎜
⎝

ia1 B

⋱
B† ian

⎞
⎟
⎠
,

where a1, . . . , an are real numbers and B contains arbitrary complex numbers. So the real

dimension is

dimu(n) = dimU(n) = n + 2n(n − 1)
2

= n2.

Example 25.8. Last, we showed last time that SU(n) = {A ∈ U(n) ∣ det(A) = 1} has

codimension one in U(n), so
dimSU(n) = n2 − 1.

Let us also compute the tangent space at the identity.

Lemma 25.9. d(det)I(X) = TrX.

Proof. There are several ways to prove this, the simplest being to observe that

det(I + tX) =
n

∏
i=1
(1 + tX i

i) +O(t2)

= 1 + t
n

∑
i=1
X i

i +O(t2),

since the sum defining the determinant can never have exactly one off-diagonal entry. □
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For K = C, det is a holomorphic function of the matrix entries, so the result still makes

sense. We can conclude that

TeSU(n) = {X ∈Matn×nC ∣X† = −X,TrX = 0} =∶ su(n)
is the space of traceless skew-Hermitian matrices, which of course has the same dimen-

sion

dim su(n) = n2 − 1.
Remark 25.10. We now make the following observation. Consider the case u(n), and let

A,B be skew-Hermitian matrices. We have:

[A,B]† = (AB)† − (BA)†

= B†A† −A†B†

= (−B)(−A) − (−A)(−B)
= [B,A]
= − [A,B] .

Hence, the commutator of two skew-Hermitian matrices is again skew-Hermitian. In other

words, u(n) is a Lie algebra. One can check that the same is true of o(n), o(p, q) (on

homework), and su(n). We will see next time why this is the case.

26. The Lie algebra of a Lie group (Mon 10/28-Wed 10/30)

26.1. The definition. A vector field X on G is said to be left-invariant if

(Lg)∗X =X
for all g ∈ G. The Lie algebra Lie(G) of G is, by definition, the subspace of all left-invariant

vector fields on G.11

It is easy to generate left-invariant vector fields on a Lie group: given a tangent vector at

the identity ξ ∈ TeG, we can define a (rough) vector field Xξ on G by

(Xξ)g = (dLg)e(ξ)
for each g ∈ G. Let us check that Xξ is invariant under left-multiplication by g0 ∈ G:

((Lg0)∗Xξ)g0g = (dLg0)g(Xξ)g
= (dLg0)g ((dLg)eξ)
= (d(Lg0 ○Lg))eξ
= (dLg0g)eξ
= (Xξ)g0g✓.

We can now characterize Lie(G) as follows.
11One could equally well define Lie(G) to be the set of right-invariant vector fields, but this would turn

out to be slightly less convenient notationally.
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Lemma 26.1. (a) Any rough left-invariant vector field is smooth.

(b) The Lie bracket of two left-invariant vector fields is again left-invariant. In particular,

Lie(G) ⊂X (G) is a Lie subalgebra.

(c) The map

TeG→ Lie(G)
ξ ↦Xξ

is an isomorphism. In particular, dimLie(G) = dimG.

Proof. (a) Let X ∈ Lie(G). By Proposition 16.3, it suffices to check that X(f) is smooth for

an arbitrary f ∈ C∞(M). Choose a path γ(t) ∈ G with γ(0) = e and γ′(0) =Xe. We have

(Xf)(e) = d

dt
∣
t=0
f(c(t)).

Meanwhile, since X is left-invariant, t ↦ gγ(t) is a path through g whose derivative is Xg.

So we also have

(Xf)(g) = d

dt
∣
t=0
f(gγ(t)).

Since gγ(t) depends smoothly both on g and t, (Xf)(g) is a smooth function of g. This

proves (a).

(b) This is clear from invariance of the Lie bracket under pushforward, Proposition 17.10.

(c) A left-inverse for the given map is:

Lie(G) → TeG

X ↦Xe.

It is clear that the values of a left-invariant vector field at all points are determined by the

value at a single point, so this is injective. □

In view of the Lemma, we are free to think of Lie(G) either as the subalgebra of X (G)
consisting of global left-invariant vector fields, or simply as the tangent space at the identity

TeG endowed with a canonical Lie-algebra structure. Later we will give the classical definition

of the Lie bracket on TeG, which has a more local flavor.

26.2. The Lie algebra of GL(n,K). Recall that TeGL(n,K) is just the space Matn×nK

of n × n matrices. We will now show that the Lie bracket on this space is just the ordi-

nary commutator bracket of matrices. Moreover, for any subgroup G < GL(n,K), TeG ⊂
TeGL(n,K) =Matn×nK is a subalgebra. This explains the observation of Remark 25.10.

Proposition 26.2. The map Matn×nK → Lie(GL(n,K)) sending A to XA is a Lie-algebra

isomorphism.12

12If you are not familiar with holomorphic tangent spaces, you can ignore the case K = C of this proposi-

tion. We will give an alternative proof next class using the exponential map.
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Proof. A matrix A = (Aij) ∈Matn×nK corresponds to the tangent vector

∑
i,j

Aij
∂

∂xij
∣
I

∈ TIGL(n,K).

To calculate the corresponding left-invariant vector field, let γ(t) ∈Matn×nK be a path through

I with γ′(0) = ∑i,j Aij ∂
∂xij
∣
I
. Let g = (xij) ∈ GL(n,K). As in the proof of Lemma 26.1a, the

path

(g ⋅ γ(t))i j = ∑
k

xik(γ(t))kj

is tangent to the corresponding left-invariant vector field at g. We therefore have

(XA)g =
d

dt
∣
t=0
g ⋅ γ(t) = ∑

i,j,k

xikA
k
j

∂

∂xij
∣
g

.(26.1)

This expression defines a smooth (indeed, linear) vector field on all of Matn×nK , which is just

Euclidean space with coordinates xij, and we may compute the Lie bracket there. We have

[XA,XB] = ∑
i1,j1,k1,i2,j2,k2

(xi1k1Ak1j1
∂xi2k2
∂xi1j1

Bk2
j2 − xi1k1Bk1

j1

∂xi2k2
∂xi1j1

Ak2j2)
∂

∂xi2j2
.

Since
∂xi2k2

∂xi1 j1
= δi2 i1δj1k2 , we may relabel i = i1 = i2 and ℓ = j1 = k2, as well as j = j2 and k = k1.

Factoring out xik, we obtain

[XA,XB] = ∑
i,j,k,ℓ

xik (AkℓBℓ
j −Bk

ℓA
ℓ
j)

∂

∂xij
.

Comparing with (26.1), we see that

[XA,XB] =X[A,B],
which gives the result. □

The same proof works for any subgroup of G < GL(n,K), which can be seen as a subman-

ifold of Matn×nK in its own right. We have also the following fact:

Proposition 26.3. Supposing that H < G is a Lie subgroup, the inclusion map TeH ⊂ TeG
is an injective Lie-algebra homomorphism, i.e., sends the Lie bracket on TeH ≅ Lie(H) to
the Lie bracket on TeG ≅ Lie(G).

Proof. We need only observe that given ξ ∈ TeH, the corresponding left-invariant vector

field XG
ξ on G is tangent to H (because it is the derivative of a path in H, see Proposition

13.13(1)) and left-invariant for the action of H, so restricts to XH
ξ . Corollary 17.3 implies

that the Lie brackets are the same. □

In view of these results, we will henceforth denote the space of n × n matrices over K,

endowed with the commutator bracket, by

gl(n,K) =Matn×nK ,

since it is canonically isomorphic to Lie(GL(n,K)). This also explains our above notations

o(n), u(n), su(n)
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for the subalgebras of skew-symmetric, skew-hermitian, and traceless skew-hermitian matri-

ces, respectively; these are canonically isomorphic to Lie(O(n)),Lie(U(n)), and Lie(SU(n)).

26.3. Functoriality of Lie(⋅). We have the following generalization of Proposition 26.3

Proposition 26.4. For a Lie-group homomorphism F ∶ H → G, the differential at the

identity dFe ∶ TeH → TẽG is a Lie-algebra homomorphism.

Proof. We claim that for each ξ ∈ TeG, XH
ξ is F -related to XG

dFe(ξ). This is true by definition

at the identity. Furthermore, recall from (24.1) that for h ∈H, we have

dFh ○ (dLh)e = (dLF (h))ẽ ○ dFe.
Applying this to ξ, we have

dFh ((dLh)e(ξ)) = (dLF (h))ẽ(dFe(ξ)).
But this just says that

dFh(XH
ξ )h = (XG

dFe(ξ))F (h).
Since h ∈H was arbitrary, we are done.

The result then follows from the fact that the Lie bracket preserves F -relatedness, Propo-

sition 17.10. □

This shows that taking tangent spaces/differentials at the identity is a functor from the

category of Lie groups to the category of finite-dimensional real Lie algebras. It is very

interesting to ask the converse question: is any finite-dimensional real Lie algebra the Lie

algebra of a Lie group? Moreover, can one always lift a Lie-algebra homomorphism to a

Lie-group homomorphism of the corresponding Lie groups?

The answer to the first question is in fact yes: there is a unique simply-connected Lie

group with a given Lie algebra, up to canonical isomorphism. The answer to the second is

in general no, but yes if the domain is simply connected. The moral is that up to passing to

covers, the Lie algebra completely determines the Lie group.

We will try to prove these statements later if time permits.

27. Adjoint representation(s), exponential map (Wed 10/30-Fri 11/1)

27.1. Left- versus right-multiplication. Before proceeding, let’s make a few more points

about the Lie-algebra construction.

1. LetX ∈ Lie(G) be a left-invariant vector field and g0 ∈ G.We of course have (Lg0)∗X =
X. Meanwhile, (Rg−10

)∗X ∈ Lie(G) is again left-invariant, but may not equal X ∶

(Lg)∗(Rg−10
)∗X = (Lg ○Rg−10

)∗X
= (Rg−10

)∗(Lg)∗X
= (Rg−10

)∗X.
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Hence, we obtain a left-action G ↻ Lie(G) called the Adjoint action (see below).

In fact, (Rg−10
)∗ is a Lie-algebra homomorphism for each g ∈ G, since pushforward

commutes with the Lie bracket. This is obviously something very special.

2. Let’s also make note of a related fact / potential point of confusion. Let g(t) ∈ G be a

path with g(0) = e, and consider the family of diffeomorphisms Lg(t). Since Lg(0) = Id,
the derivative

X = d

dt
Lg(t)∣

t=0
∈X (M)

is a smooth vector field. One might think that this is left-invariant; however, it is

actually right-invariant, because

((Rg−10
)∗X)

h
= (Rg−10

)∗
d

dt
Lg(t)(h)∣

t=0

= d

dt
Rg−10

Lg(t)(h)∣
t=0

= d

dt
Lg(t)Rg−10

(h)∣
t=0

=XR−1g0(h)
.

On the other hand, the derivative of right-multiplication will be a left-invariant vector

field; specifically, if g′(t) = ξ, we have (e ⋅ g)′(t) = g′(t) = ξ, so we get

(27.1)
d

dt
Rg(t)∣

t=0
=Xξ.

This shows that any left-invariant vector field is the derivative of right-multiplication

by a path through the identity. This gives another useful way to describe Lie(G).

27.2. The Adjoint/adjoint representations. Recall that a representation of a group,

G, over K = R or C, is a group homomorphism ρ ∶ G→ GL(V ), where V is a K-vector space.

Equivalently, ρ is a group action of G on V by K-linear maps, i.e., satisfies

ρ(gh) = ρ(g) ○ ρ(h).
This is called a Lie-group representation if V is finite-dimensional and ρ is smooth as a

map from G to GL(V ).
A representation of a Lie algebra, g, is a Lie-algebra homomorphism ρ ∶ g → gl(V ),

i.e., a map satisfying

ρ([ξ, η]) = [ρ(ξ), ρ(η)] ,
where the bracket on the left is the Lie bracket on g and the bracket on the right is the

commutator bracket on gl(V ).
Note that every Lie-group representation gives rise to a Lie-algebra representation by

taking tangent spaces at the identity. This follows from functoriality of Lie(⋅), Proposition
26.4.

We now attach a canonical pair of representations to any Lie group.
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Definition/Lemma 27.1. The (upper-case) Adjoint action of G on Lie(G), denoted

Ad ∶ G→ GL(Lie(G))

is the representation defined in the following three equivalent ways:

1. Adg = (Rg−1)∗ ∶ Lie(G) → Lie(G).

2. Adg = (dCg)e ∶ TeG→ TeG.

3. Adg ∶Xξ ↦X(dLg)g−1(dRg−1)eξ.

Proof. We showed above that (1) is left-invariant, so we may indeed take the target to be

Lie(G) ⊂X (M).
The fact that (2) and (3) are equivalent is obvious, because Cg = Lg ○Rg.

It remains to show that (1) and (3) are equivalent. We have

(Rg−1)∗Xξ = (Lg)∗(Rg−1)∗Xξ

by left-invariance. Taking the fiber at the identity gives the result. □

Definition/Lemma 27.2. The (lower-case) adjoint representation of Lie(G) on itself,

denoted

ad ∶ Lie(G) → gl(Lie(G))

is the Lie-algebra representation defined by

adX(Y ) = [X,Y ] .

We have

(27.2) ad(⋅) = (dAd)I(⋅).

Proof. We first check that this is a Lie-algebra representation:

ad[X,Y ] = [adX ,adY ]

by Corollary 21.3c (the Jacobi identity).

To check (27.2), let X,Y ∈ Lie(G) be left-invariant vector fields, and let g(t) with g(0) = e
and g′(0) =Xe. By (a) of the previous theorem, we have

(dAde(X)) (Y ) =
d

dt
∣
t=0
(Rg−1(t))∗Y.

In view of (27.1), the family of diffeomorphisms Rg(t) is equal to θt, the flow of X, to second

order at t = 0; it therefore computes the Lie derivative (exercise based on definition of the
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Lie derivative). We also have Rg−1(t) = Rg(−t) to second order. So we get

dAde(X)(Y ) =
d

dt
(Rg−1(t))∗ Y ∣

t=0

= d

dt
(Rg(−t))∗ Y ∣

t=0

= d

dt
(θ−t)∗ Y ∣

t=0

= [X,Y ] = adX(Y ).

□

Remark 27.3. Note that we can reverse the proof of the definition/lemma to give another

derivation of the Jacobi identity!

27.3. The exponential map. We’ve shown how to go from a Lie group to a Lie algebra;

let’s briefly discuss how to go the other way. One can prove (HW) that any left-invariant

vector field on a Lie group is complete, so it makes sense to define the exponential map

exp ∶ TeG→ G

ξ ↦ γ
Xξ
e (1).

Here γ
Xξ
e (t) is the integral curve of Xξ with γ

Xξ
e (0) = e. The exponential map satisfies

exp(tξ) = γXξ
e (t),

which follows from the definition (HW), and

exp((t + s)ξ) = exp(tξ) ⋅ exp(sξ),

which follows from left-invariance. So for each ξ ∈ TeG, one obtains a homomorphism R→ G,

a.k.a, a 1-parameter subgroup of G. This is very useful, although it is important to note that

in general

(27.3) exp(ξ + η) ≠ exp(ξ) ⋅ exp(η)

unless ξ and η commute.

In the case of a matrix Lie group G < GL(n,K), the exponential map is just the familiar

one. Indeed, we saw in the proof of Proposition 26.2 that the left-invariant vector field XA

corresponding to A ∈ gl(n,K) is a linear vector field. As in Example 19.4, the integral curves

are simply t↦ exp(tA), this being the matrix exponential. In fact, there is a precise formula

expressing the relation between the two sides of (27.3), called the Campbell-Baker-Hausdorff

formula, which turns out to involve only the commutator bracket. This corresponds to the

fact that the Lie-algebra structure completely determines the Lie-group structure, locally,

as we alluded to at the end of last class (and may get to prove later using the Frobenius

theorem).
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Now, we can identify all the tangent spaces of GL(n,K) with gl(n,K) as usual. Then

pushforward by left/right-multiplication just corresponds to matrix multiplication, so we

have

Adexp(tA)(B) = exp(tA)B exp(−tA)

= (1 + tA + t
2

2
A2 +⋯)B(1 − tA + t

2

2
A2 −⋯)

= 1 + t(AB −BA) +⋯.

This shows us that the derivative of the Adjoint action at the identity indeed gives the

adjoint representation:

d

dt
Adexp(tA)(B)∣t=0 = adA(B) = [A,B] .

This is the classical viewpoint on the Lie bracket.

28. Example: SU(2) → SO(3) (Fri 11/1)

We shall now give a well-known example to demonstrate the above theory. You showed

on homework that

SU(2) = {(z −w̄
w z̄

) ∣ ∣z∣2 + ∣w∣2 = 1} < GL(2,C),

so that SU(2) is diffeomorphic to the 3-sphere. We also have

su(2) = {(ia −w̄
w −ia) ∣ a ∈ R,w ∈ C} ⊂ gl(2,C).

Let us label the four elements

SU(2)
³ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹· ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
q0=1=

⎛
⎜
⎝

1

1

⎞
⎟
⎠
, q1=

⎛
⎜
⎝

i

−i
⎞
⎟
⎠
, q2=

⎛
⎜
⎝

−1
1

⎞
⎟
⎠
, q3=

⎛
⎜
⎝

i

i

⎞
⎟
⎠

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
su(2) .

Conveniently, q1, q2, and q3 belong both to SU(2) and to su(2). Thinking of SU(2) as the

3-sphere, these three elements lie in the equatorial plane, which is also identified (by trans-

lation) with the tangent space at the north pole q0. It is easy to check the following:

q2i = −q0, i = 1,2,3, q1q2 = −q3 & cyclic permutations.

These are called the quaternion relations, see more on homework.

Now, for ω, η ∈ gl(n,C), we can define

⟨ω, η⟩ ∶= Trω†η.
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This is a Hermitian inner product:

⟨ω, η⟩ = Trω†η

= Tr(ω†η)T

= Tr ηT ω̄
= Tr η†ω = ⟨η,ω⟩.

Specializing to ω, η ∈ su(n), we have

⟨ω, η⟩ = Trω†η

= Tr(−ω)(−η†)
= Tr η†ω

= ⟨η,ω⟩ = ⟨ω, η⟩.

So in fact ⟨⋅, ⋅⟩ ∶ su(n) × su(n) → R is a real inner product. In particular, this gives us

a natural inner product on the 3-dimensional real vector space su(2), identifying it with

Euclidean 3-space.

Now, given A ∈ SU(2) and ω, η ∈ su(2), we have

⟨AdAω,AdAη⟩ = Tr(AωA†)†(AηA†)
= TrAω†A†AηA†

= TrAω†ηA†

= TrA†Aω†η

= Trω†η = ⟨ω, η⟩ .

So AdA acts by an isometry of su(2) ≅ R3. The adjoint action therefore gives a group

homomorphism

Ad ∶ SU(2) → SO(3).

Note that these groups are both 3-dimensional; we claim that the map is a local diffeomor-

phism.

We first calculate the kernel. Note that

Ad±q0(ω) = (±q0)ω(±q0) = q0ωq0 = ω,

so {±q0} ⊂ kerAd; we claim that this is the entire kernel.

A general element of SU(2) conjugates q1 as follows:

(z −w̄
w z̄

)(i −i)(
z̄ w̄

−w z
) = i(z −w̄

w z̄
)( z̄ w̄

w −z)

= i(∣z∣
2 − ∣w∣2 2z̄w

2z̄w ∣w∣2 − ∣z∣2) .
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If this equals q1, we must have z = 0 or w = 0 based on the off-diagonal entries. If z = 0, then
the result is −q1, so we must have w = 0. Hence, the stabilizer of q1 is the U(1) subgroup

{(z
z̄
) ∣ ∣z∣ = 1} < SU(2).

We then calculate the action of this subgroup on q2 ∶

(z
z̄
)( −1

1
)(z̄

z
) = (z

z̄
)( −z
z̄

)

= ( −z2
z̄2

)

This equals q2 if and only if z = ±1, so we have kerAd = {±q0} as claimed.

Since the kernel has dimension zero, we can already conclude that the (constant) rank is

three, so Ad is a local diffeomorphism. It is 2-to-1 since the kernel has order two. Since any

local isomorphism of (compact) groups is a covering map, we conclude that SU(2) is the

universal cover of SO(3). Hence, we learn that

π1 (SO(3)) ≅ Z/2.
Meanwhile, the derivative at the identity

ad ∶ su(2) ∼→ so(3)
must be a Lie-algebra isomorphism! This gives us an example of two non-isomorphic Lie

groups with isomorphic Lie algebras. Using the quaternion relations, it is easy to calculate

this isomorphism explicitly in the basis q1, q2, q3 for su(2) ∶

adq1(⋅) = [q1, ⋅] =
⎛
⎜
⎝

0 0 0

0 0 2

0 −2 0

⎞
⎟
⎠

adq2(⋅) = [q2, ⋅] =
⎛
⎜
⎝

0 0 −2
0 0 0

2 0 0

⎞
⎟
⎠

adq3(⋅) = [q3, ⋅] =
⎛
⎜
⎝

0 2 0

−2 0 0

0 0 0

⎞
⎟
⎠
.

Last, since q2i = −q0 for i = 1,2,3, the exponential map is given simply by

exp(tqi) = q0 cos t + qi sin t.
This is a 1-parameter subgroup traveling around a great circle in SU(2) ≅ S3.
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Part 6. Vector bundles

29. Linear algebra (Mon 11/4)

29.1. The Einstein summation convention. Let V be a finite-dimensional vector space

over a field K. The dual space is denoted by V ∗ = HomK (V,K) . We have a bilinear pairing

V × V ∗ →K

(v,α) ↦ α(v).(29.1)

This pairing gives rise to a canonical map from V to V ∗∗, also written

v ↦ (evv ∶ α ↦ α(v)) .

Since dim(V ) < ∞, this is an isomorphism, so that V and V ∗∗ are canonically isomorphic.

Meanwhile, V and V ∗ are isomorphic, but not in a canonical way.

There is, however, a canonical bijection between the set of bases for V and the set of bases

for V ∗, as follows. Given a basis {ei}ni=1 for V, there is a unique dual basis for V ∗, denoted

{ej}nj=1, which satisfies

ej(ei) = δj i.

Let us see how the pairing (29.1) looks in these bases. Given v = ∑i aiei ∈ V and α = ∑j bjej ∈
V ∗, we have

α(v) = ∑
i,j

aibje
j(ei) = ∑

i,j

aibjδ
j
i

= ∑
i

aibi.

Let’s see now how these look in a different basis, {ẽi}ni=1, for V. Since this is a basis, there

exists a matrix σ = (σki) such that

ei = ∑
k

σkiẽk.

We then have ej = ∑ℓ(σ−1)jℓẽℓ; for,

ej(ei) = ∑
k,ℓ

(σ−1)jℓσkiẽℓ (ẽk)

= ∑
ℓ

(σ−1)jℓσℓi = δj i.

Now, we have

v = ∑aiei = ∑aiσkiẽk = ∑
k

ãkẽk,

where ãk = ∑i σkiai. We also have

α = ∑
j

bj(σ−1)jℓẽℓ = ∑ b̃ℓẽ
ℓ,

where b̃ℓ = ∑j bj (σ−1)j ℓ.
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Let us now calculate

∑
k

ãkb̃k = ∑
i,j,k

σkia
ibj(σ−1)jk

= ∑
i,j,k

(σ−1)jkσkiaibj

= ∑
i,j

δj ia
ibj

= ∑
i

aibi.

Is this a miracle? By no means: both sides are equal to α(v) ∈K, so they must agree.

In view of this everyday non-miracle we shall adopt the Einstein summation conven-

tion and simply write

α(v) = aibi,

where we omit the summation sign. The RHS refers to the sum of the coefficients of v in

the basis {ei} against the sum of the coefficients of α in, specifically, the dual basis {ei} of
{ei}. So the convention has a very precise meaning (that makes it work).

In addition to using the Einstein summation convention, we shall also *abuse* the Einstein

summation convention, i.e., omit the summation sign when summing on upper and lower

indices, even when these do not have precisely the meaning that we just explained. So e.g.

the vector v above will be written as

v = aiei.

It’s worth remembering that this is an abuse of the Einstein convention, not the real thing.

29.2. Tensor products.

29.2.1. Motivation. Let V and W be vector spaces over a field K. Given α ∈ V ∗ and β ∈W ∗,

both linear maps to K, we can define a bilinear map

V ×W →K

(v,w) ↦ α(v)β(w).(29.2)

This map is called “α⊗ β;” we want to know what space it belongs to.

Since the sum of two bilinear functions is again bilinear (check), the set of all bilinear

functions V ×W → K forms a vector space. We could simply define this space to be the

“tensor product” of V ∗ and W ∗. However, the tensor product of V with W would then have

to be defined by duality, which is a bit awkward. It’s also not be entirely clear what sort of

space we would be dealing with.

It is much better to give a construction of the tensor product that clearly satisfies a certain

universal mapping property, as we shall do.
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29.2.2. Construction and universal property. Let S be a set. The free vector space on S

(over K) is the space of all formal K-linear combinations of elements of S ∶

F(S) ∶= {
m

∑
i=1
aixi ∣ xi ∈ S}.

To be more precise, this is the space of all maps f ∶ S →K with f(x) = 0 for all but finitely

many x ∈ S, which is naturally a vector space (since K is).

The universal property of F(S) is: given any map A ∶ S → U, where U is a K-vector

space, there exists a unique linear map Ā ∶ F(S) → U such that the diagram

S

��

A

""

F(S) Ā
// U

commutes. Here the vertical map sends x ∈ S to the formal sum 1 ⋅x. The universal property
is quite obvious, e.g. just observe that the set of such 1 ⋅ x is a basis for F(S), so can be

mapped arbitrarily by a linear map.

Define R ⊂ F(V ×W ) to be the subspace generated by all elements of the forms

(av,w) − a(v,w) (v + v′,w) − (v,w) − (v′,w)
(v, aw) − a(v,w) (v,w +w′) − (v,w) − (v,w′),

where a ∈ K,v ∈ V, and w ∈ W. The tensor product of V with W is defined to be the

quotient

V ⊗W = V ⊗K W ∶= F(V ×W )/R.

The image of (v,w) = 1 ⋅ (v,w) is denoted by

v ⊗w = [(v,w)] ∈ V ⊗W.

The universal property of the tensor product is as follows. Given a bilinear map

A ∶ V ×W → U,

where U is a vector space, there exists a unique linear map Ã ∶ V ⊗W → U such that the

following diagram commutes:

V ×W
(v,w)↦v⊗w

��

A

##

V ⊗W Ā
// U.

To prove the universal property of ⊗, first note that by the universal property of free vector

spaces, there exists a unique map Ā ∶ F(V ×W ) → U such that the diagram above commutes.

Then this map descends to V ×W if and only if Ā vanishes on R. But that is true if and
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only if A itself is bilinear. To sum up, we get the following diagram:

V ×W

��
A

��

F(V ×W )
(v,w)↦v⊗w

��

Ā

$$

V ⊗W Ã
// U,

as required. The map Ã is unique because Ā is unique.

Note that the universal property characterizes V ⊗W up to canonical isomorphism: given

any other space satisfying the universal property, we can let U = V ⊗W to get a unique (i.e.

canonical) isomorphism.

29.2.3. More properties of ⊗.

Proposition 29.1 (Functoriality). Given f ∶ V → V ′ and g ∶ W → W ′, linear maps, there

exists a unique linear map

f ⊗ g ∶ V ⊗W → V ′ ⊗W ′

such that

(f ⊗ g)(v ⊗w) = f(v) ⊗ g(w).

Proof. We have a diagram

V ×W

��

(f,g)
//

&&

V ′ ×W ′

��

V ⊗W // V ′ ⊗W ′,

where the diagonal map is just the composition. Notice that this is bilinear, because

(f(av + bv′), g(w)) = (af(v) + bf(v′)), g(w))
↦ (af(v) + bf(v′)) ⊗w = af(v) ⊗w + bf(v′) ⊗w,

etc. So we can fill in the dotted arrow to obtain the desired map. Since the space of

decomposable elements (i.e. those of the form v ⊗w) spans V ⊗W, the map is unique. □

Proposition 29.2. Suppose V and W are finite-dimensional vector spaces over K of di-

mension m and n, respectively. Let {ei},{fj} be bases. Then E = {ei ⊗ fj} is a basis for

V ⊗W. In particular, dim (V ⊗W ) =mn.

Proof. To see that E = {ei ⊗ fj} spans the tensor product, recall by construction that de-

composable elements span. But any decomposable element is clearly in the span of E, so E

in turn spans V ⊗W.
To check linear independence, suppose that

aijei ⊗ fj = 0;
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we must show that aij = 0 for all i, j. Let {ei} and {f j} be the dual bases of {ei} and {fj},
respectively. Consider the bilinear form ek ⊗ f ℓ obtained as in (29.2), i.e., the one coming

from the diagram

V ×W

��

ek(⋅)fℓ(⋅)

$$

V ⊗Wek⊗fℓ
// K.

Applying this to the above sum, we get

0 = ek ⊗ f ℓ(aijei ⊗ ej) = aijek ⊗ f ℓ(ei ⊗ fj) = akℓ.

This completes the proof of linear independence. □

Proposition 29.3. Assuming that V and W are finite-dimensional, we have canonical iso-

morphisms

V ∗ ⊗W ∗ ≅ (V ⊗W )∗ ≅ L(V,W ;K),
where L(V,W ;K) is the space of bilinear functionals V ×W →K.

Proof. Denote the spaces in the proposition by (1), (2), and (3).

To make a map (1) → (2), it suffices to make a bilinear map V ∗ ×W ∗ ↦ (V ⊗W )∗. Given

(α,β) ∈ V ∗ ⊗W ∗, we have as usual the bilinear map α ⋅ β ∶ V ×W → K, which descends to

a linear map α ⊗ β ∶ V ⊗W → K. This map is bilinear in α and beta, so descends to the

required map. A map (1) → (3) can be constructed in the same fashion.

To map (3) → (2), just observe that a bilinear map V × W → K gives a linear map

V ⊗W →K. Of course, the composition of the maps (1) → (3) → (2) is equal to the map (1)

→ (2) that we constructed.

Finally, we must show that if V and W are finite-dimensional then the map (1) → (2) is

an isomorphism. By the previous proposition, we can take a basis {ei⊗ fj} for V ⊗W. Then
the collection {ei ⊗ f j} is clearly the dual basis for (V ⊗W )∗. Since the elements ei ⊗ f j
all lie in the image of (1) → (2), we have a surjection. Of course these are also a basis for

V ∗ ⊗W ∗, so we are done. □

Proposition 29.4. We have the following associativity and distributivity properties:

(V1 ⊗ V2) ⊗ V3 ≅ V1 ⊗ (V2 ⊗ V3), etc.

(V1 ⊗⋯⊗ Vn)∗ ≅ V ∗1 ⊗⋯⊗ V ∗n .

Proof. The associativity must hold because both sides verify the required universal property.

The second statement follows from the previous proposition by associativity and induction.

□

In view of this proposition, we can unambiguously denote the multiple tensor product

V1 ⊗⋯⊗ Vk.
This space satisfies a universal mapping property with respect to multilinear maps V1 ×⋯×
Vk → U which is an obvious generalization of the above universal property.
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29.2.4. Hom and Tr via ⊗.

Proposition 29.5. There is a canonical isomorphism

W ⊗ V ∗ ≅ Hom (V,W )

as long as dim(V ),dim(W ) < ∞.

Proof. We can map (w,α) ∈W ×V ∗ to the rank-1 linear map (v ↦ α(v)w). This is bilinear,
so descends to a map between the given spaces. To see that it is an isomorphism, fix bases

{ei} for V and {fj} for W. Let A ∈W ⊗ V ∗ and define the matrix

Aij = f i(A(ej)).

This is just the usual matrix corresponding of a linear map in fixed bases. We can then

reconstruct A by

A = Aijfi ⊗ ej,
which is in the image of the LHS. □

Remark 29.6. As a comment, let’s see how a linear map A as in the previous proof acts

on a vector v = bkek ∈ V. We have

A(v) = aijfi ⊗ ej(bkek) = Aijbjfi ∈W.

The coefficient of fi is Aijbj, which corresponds to the usual rule for multiplying a matrix

by a vector. It also follows that the matrix of the composition A ○B is AikBk
j, giving the

usual matrix multiplication rule.

Proposition 29.7. ● There is a canonical map Tr ∶ End(V ) → K, called the trace,

which is given in any basis by TrA = Aii.

● There is a canonical element 1 ∈ V ⊗ V ∗ which is given in any basis by ei ⊗ ei.

Proof. For the first bullet, by the previous proposition, we have End(V ) ≅ V ⊗V ∗. The map

in question is induced by the duality pairing (29.1) via the universal property of the tensor

product!

For the second bullet, this is just the image of the identity map Id ∈ End(V ). □

29.3. Symmetric and alternating tensors. Let V ×k =
k

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
V ×⋯ × V and V ⊗k =

k
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
V ⊗⋯⊗ V .

The transposition map

σij ∶ V ×k → V ×k

(v1, . . . , vi, . . . , vj, . . . vn) ↦ (v1, . . . , vj, . . . , vi, . . . vn)
descends to an automorphism of the tensor product

σij ∶ V ⊗k → V ⊗k

v1 ⊗⋯⊗ vi ⊗⋯⊗ vj ⊗⋯⊗ vn ↦ v1 ⊗⋯⊗ vj ⊗⋯⊗ vi ⊗⋯⊗ vn.
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We denote the space of symmetric elements

SymkV = {ω ∈ V ⊗k ∣ σij(ω) = ω ∀i, j} ⊂ V ⊗k

and alternating elements

ΛkV = {ω ∈ V ⊗k ∣ σij(ω) = −ω ∀i, j} ⊂ V ⊗k.
For k = 2, we have V ⊗2 = Sym2V ⊕ Λ2V, but in general this is false. We do have canonical

projections onto each space, which are more natural to write down on the dual spaces:

Sym ∶ (V ∗)⊗k → SymkV ∗

(Symω) (v1, . . . , vk) =
1

k!
∑
σ∈Sk

ω (vσ(1), . . . , vσ(k)) .

Alt ∶ (V ∗)⊗k → Alt kV ∗

(Altω) (v1, . . . , vk) =
1

k!
∑
σ∈Sk

sgnσ ω (vσ(1), . . . , vσ(k)) .

Ordinarily a projection map requires a choice of complementary space, but these ones work

as written (it is the transpose of the inclusion map ΛkV ↪ T⊗kV ).

We also have a symmetric product

SymkV ∗ ⊗ SymℓV ∗ → Symk+ℓV ∗

(α,β) ↦ α ⋅ β ∶= Symα⊗ β
and, more importantly, the wedge product

ΛkV ∗ ⊗ΛℓV ∗ → Λk+ℓV ∗

(α,β) ↦ α ∧ β ∶= (k + ℓ)!
k!ℓ!

Altα⊗ β.

These are both associative, the first is commutative, and we have the well-known formula

ω ∧ η = (−1)kℓη ∧ ω.
The reason for the sign in the definition of ∧ is so that if {ei} is the dual basis of {ei} then

(ei1 ∧⋯ ∧ eik) (ei1 , . . . , eii) = 1
if (i1, . . . , ik) are distinct. In other words, we have

ei1 ∧⋯ ∧ eik = ∑
σ∈Sn

sgnσ eσ(i1) ⊗⋯⊗ eσ(ik).

Proposition 29.8. The set of elements

{ei1 ∧⋯ ∧ eik ∣ i1 < i2 < . . . < ik}
forms a basis for ΛkV ∗. In particular, dimΛkV ∗ = (nk) = dimΛkV.

Proof. The elements clearly span the given space by multilinearity of the iterated wedge

product, and linear independence can be seen by plugging in the k-tuple (ei1 , . . . , eik). □
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29.4. The determinant. The symmetric and wedge products are functorial: a linear map

A ∶ V → V induces maps from T⊗kV → T⊗kV which commute with the transposition maps

σij, so induce maps from ΛkV → ΛkV compatible with compositions. Note that the top

wedge power ΛnV is a one-dimensional K-vector space, and A induces a map

ΛnA ∶ ΛnV → ΛnV.

Any endomorphism of a one-dimensional vector space is a multiple of the identity. We define

the determinant det(A) ∈K to be the unique element such that

ΛnA = det(A) ⋅ Id.

Now, given two endomorphisms A,B ∶ V → V, by functoriality, we have

Λn(A ○B) = ΛnA ○ΛnB.

The LHS is det(A ○B)Id and the RHS is det(A) ⋅ det(B)Id. We obtain the familiar relation

det(A ○B) = det(A)det(B).

30. Vector bundles (Wed 11/06)

30.1. The definition. Let E and X be topological spaces and π ∶ E → X a surjective

continuous map. We use the following notation:

Γ(U,E) = {sections of π over U},

sometimes called local sections, and

Γ(E) = Γ(X,E),

called global sections. These will always be assumed to be continuous. Refer to Definition

16.1 for the definition of a section.

Definition 30.1. The triple (E,X,π), usually abbreviated E, is called a vector bundle

of rank r over K = R or C if:

1. Each fiber Ex is endowed with the structure of a vector space of dimension r over K,

in which the addition and multiplication maps + ∶ Ex ×Ex → Ex and ⋅ ∶K ×Ex → Ex
are both continuous in the subspace topology on Ex.

2. For each x0 ∈ X, there exists a neighborhood U ∋ x0 together with a set of sections

e1, . . . , er ∈ Γ(U,E) such that {eα(x)} forms a basis of Ex for each x ∈ U, and the map

U ×Kr → π−1(U) ⊂ E
(x, (a1, . . . , ar)) ↦ aαeα(x)

(30.1)

is a homeomorphism.

With this definition comes the following terminology.
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● E is called the total space, X is called the base space

● A pair (U,{eα}) as in (2) is called a local frame or local trivialization

● A vector bundle of rank one is called a line bundle. Care should be taken as to whether

this is a real or complex line bundle, as the two have very different properties.

● If E is a C-vector bundle of rank r, we obtain a real vector bundle of rank 2r by letting

R ⊂ C act by restriction. This is called the underlying real bundle. For example, the

underlying real bundle of a complex line bundle is a real vector bundle of rank two.

The reason for emphasizing the local frame {eα}rα=1 in the previous definition is that a local

frame is the analogue of a basis in the world of vector bundles, as shown by the following

basic lemma.

Lemma 30.2. Let s ∈ Γ(V,E) be a section of E over V. Given any local frame (U,{eα}),
there exist continuous functions sα ∈ C0(U ∩ V,E), α = 1, . . . , r, such that s∣U∩V = sαeα.
Proof. Since eα(x) is a basis for Ex for each x ∈ X, the functions sα exist and are unique.

It remains to check that they are continuous. This is true because each sα is equal to the

composition

sα ∶ U ∩ V s→ π−1(U ∩ V ) ∼→ (U ∩ V ) ×Kr πα→ K.

Here, the middle map is the inverse of the homeomorphism (30.1). □

30.2. Examples.

● Kr =X ×Kr is called the product bundle of rank r.

● S = [0,1]×R/(0, v) ∼ (1,−v) is called the Möbius bundle. It is diffeomorphic to the

Möbius strip considered above, but we consider it as a bundle over S1 = [0,1] /0 ∼ 1
via the projection to the first factor.

● Take X =KPn = {ℓ ⊂Kn+1 ∣ dim ℓ = 1}. Define the tautological bundle

O(−1) = OKPn(−1) ∶= {(ℓ, v) ∈X ×Kn+1 ∣ v ∈ ℓ}.
The projection map is the restriction of the projection to the first factor. For example,

the tautological bundle over RP1 is the Möbius bundle (exercise on HW). For K = C,
the tautological bundle on CP1 is something (almost) new.

● If M is a smooth manifold, the tangent bundle TM is a vector bundle of rank r over

M. By construction, each coordinate chart of M gives a local frame { ∂
∂xi
}ni=1. We

typically reserve Latin indices (i, j, k, . . .) for coordinate frames on TM or T ∗M, and

use Greek indices (α,β, γ, . . .) for general frames on a general vector bundle.

Remark 30.3. Notice that TM →M is in fact a smooth vector bundle, i.e., all the objects

appearing in the definition are smooth; see Definition 35.1 below.
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30.3. Bundle morphisms and triviality. Given two bundles E and F over the same

space, X, a bundle morphism is a continuous map σ such that the diagram

E

πE   

σ
// F

πF~~

X

commutes and the induced map σx ∶ Ex → Fx is linear for each x ∈X.
The morphism σ is called an isomorphism if it has an inverse morphism.

Example 30.4. By definition, the inclusion map O(−1) →Kn+1
KPn is an injective morphism.

It is easy (and important) to characterize bundle isomorphisms.

Lemma 30.5. A bundle morphism σ ∶ E → F is an isomorphism if and only if σx ∶ Ex → Fx
is an isomorphism for each x ∈X.

Proof. (⇒) This direction is trivial.

(⇐) If σx is invertible for each x then a set-theoretic inverse σ−1 clearly exists; it remains

to check continuity, which can be done in any local trivializations. Write σ(eα) = σβα(x)fβ,
and σ−1(fβ) = ταβeα. We must show that ταβ is continuous. We have

fβ(x) = σx(σ−1x (fβ(x)))
= ταβ(x)σx(eα(x))
= ταβ(x)σγα(x)fγ(x)
= σγα(x)ταβ(x)fγ(x).

This is true for each x and β = 1, . . . , r if and only if

(ταβ)(x) = (σαβ(x))−1.

As we know from homework, the inverse of a continuous, invertible matrix-valued function

is continuous (by Cramer’s formula). □

Definition/Lemma 30.6. A vector bundle E → X is called trivial if it is isomorphic to

the product (a.k.a. trivial) bundle Kr =X ×Kr. This is true if and only if E admits a global

frame.

Proof. (⇒) The trivial bundle has the global frame {eα(x) = (x, (0, . . . ,1, . . . ,0))}, where the
1 is in the α’th entry.

(⇐) Suppose given a global frame {eα}rα=1 ⊂ Γ(E). Define a morphism Kr → E by sending

(x, (a1, . . . , ar)) ↦ aαeα(x).

Since {eα} is a global frame, this is an isomorphism on each fiber. By the Lemma, it is a

global isomorphism. □

Definition 30.7. A smooth manifold M is called parallelizable if TM is a trivial vector

bundle, i.e., admits a global frame. This is a set of global vector fields X1, . . . ,Xn such that

(X1)p, . . . , (Xn)p spans TpM for each p ∈M.
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Examples 30.8. ● You showed on homework that TS1 is diffeomorphic to S1 ×R. In
the process you probably constructed the global frame ∂

∂θ for TS1, showing that it is

parallelizable.

● TS2 does not admit any nonvanishing global sections, by the hairy ball theorem. So

S2 is not parallelizable.

● S3 ≅ SU(2) is parallelizable, by the following proposition.

Proposition 30.9. Every Lie group is parallelizable.

Proof. A basis for Lie(G) forms a global frame. □

Remark 30.10. The n-sphere is parallelizable if and only if n = 1,3, or 7. This was proved
independently by Hirzebruch, Kervaire, Bott, and Milnor in 1958.

31. Transition functions (Fri 11/08)

As with smooth manifolds, there are two perspectives on vector bundles: one abstract and

one coordinate-based. The vector-bundle analogue of a coordinate chart is a local frame,

and the analogue of a transition map is the following.

Definition 31.1. Let E → X be a vector bundle. Fix a cover {Ua}a∈I of X such that E∣Ua

is trivial for each a, and pick a local frame {eaα}rα=1 ⊂ Γ(Ua,E) for each a. The transition

function σab ∈ C0 (Ua ∩Ub,GL (n,K)) is defined by:

eaα = ∑
β

σab
β
αe

b
β (no sum on b).

Given a section s ∈ Γ(Ua ∩Ub,E), let sα and tα be its local components in the frames {eaα}
and {ebβ}, respectively, so that

sαeaα = s = tβebβ.
We then have s = sασabβαebβ (no sum on b), so that

σab
β
αs

α = tβ.

In other words, the transition function just acts on components by matrix multiplication.

Note that by definition, we always have

σaa = 1

and, by composition,

σbc ⋅ σab = σac on Ua ∩Ub ∩Uc.
These are called cocycle conditions. With a = c, the second one also gives

σca = σ−1ac on Ua ∩Uc.
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Examples 31.2. 1. Let E = TM. Suppose given two charts {xi} and {yj}, and consider

the two coordinate frames { ∂
∂xi
} and { ∂

∂yj
}. By definition, the transition function is

the unique matrix-valued function satisfying

∂

∂xi
= σxyji

∂

∂yj
.

We therefore have

σxy
j
i =

∂yj

∂xi
.

In other words, the transition functions of TM are the Jacobians of the transition

maps of M .

2. Consider the Möbius bundle S → S1. Let U0 = (0,1) and U1 = [0, 12) ∪ (12 ,1] / ∼ . We

can make sections

e(x) = 1
over U0 and

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1 0 ≤ x < 1
2

−1 1
2 < x ≤ 1

over U1. The transition function is

σ01 =
⎧⎪⎪⎨⎪⎪⎩

1 0 < x < 1
2

−1 1
2 < x < 1.

3. Consider the tautological bundle O(−1) → CP1. Let U1 = {[z,1] ∣ z ∈ C} and U0 =
{[1,w] ∣ w ∈ C}. We can make sections

e([z,1]) = (z,1)
and

f([1,w]) = (1,w).
Since w = 1

z , the transition function is

σ01 = z−1.
This explains the notation O(−1).

As with smooth manifolds (cf. Lemma 4.1), one can completely reconstruct a bundle from

its transition functions; in fact, one can also construct new bundles, as we shall do.

Lemma 31.3 (Vector-bundle construction lemma). Given an open cover {Ua}a∈I and a

collection of matrix-valued functions {σab ∈ C0 (Ua ∩Ub,GL(r,K))}a,b∈I satisfying the cocycle
conditions, there exists a vector bundle E →X with these transition functions.

Proof sketch. We can simply let E = ⊔a (Ua ×Kr) / ∼, where
(x, v)a ∼ (x,σab(v))b.

The cocycle conditions imply that this is an equivalence relation, so the space is well defined

and picks one point in each chart over x ∈ X. The projection to X is well defined and its
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fibers are vector spaces of dimension r. Also, the frames on each trivialization descend to

frames on E. □

We can also reduce the question of triviality/isomorphism to one of transition functions.

Proposition 31.4. Let E →X and F →X be vector bundles of rank r over the same space.

Then E and F are isomorphic if and only if, after passing to a common refinement {Ua}a∈I ,
their respective transition functions σab and σ′ab are related by

σab = τ−1b σ′abτa

for a collection of matrix-valued functions {τa ∈ C0(Ua,GL(r,K))}a∈I .

Proof. This is an exercise in the definitions (on HW). □

Remark 31.5. In the case r = 1, since GL(1,K) = K× is abelian, this actually shows that

the set of isomorphism classes of line bundles on X is equal to the sheaf cohomology group

H1(X,C 0(K×)).

32. Bundle operations, subbundles (Fri 11/08-Mon 11/11)

32.1. Bundle operations. We now come to the following Meta-Theorem: any13 func-

torial operation on the category of vector spaces gives rise to a functorial operation on the

category of vector bundles.

Example 32.1. The direct sum of two bundles has total space equal to the fiber product

E ⊕ F = E ×X F = {(v,w) ∈ E × F ∣ πE(v) = πF (w)}.

The fiber is Ex ⊕ Fx, and the trivializations are the obvious ones.

Example 32.2. Define the tensor product E ⊗ F to be the bundle of rank rs with tran-

sition functions σab ⊗ µab, where σ and µ are transition functions for E and F, respectively,

on a common refinement. To be sure that Lemma 31.3 permits this, we need to check the

cocycle conditions. Applying functoriality of tensor products, Proposition 29.1, we get

(σbc ⊗ µbc) ○ (σab ⊗ µab) = (σbc ○ σab) ⊗ (µbc ○ µab) = σac ⊗ µac.

So the tensor-product bundle exists. For each x ∈X, the fiber (E⊗F )x is naturally identified

with Ex ⊗ Fx. It is not hard to convince oneself that E ⊗ F is independent of the system of

trivializations used to construct it; one can also prove this using a universal property (HW).

Here is a table with all the operations we discussed, together with the corresponding

transition functions:

13To be taken with a grain of salt.
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Operation Fiber Rank Transition function

E ⊕ F Ex ⊕ Fx r + s σ ⊕ µ
E ⊗K F Ex ⊗ Fx r ⋅ s σ ⊗K µ
E∗ E∗x r (σT )−1

HomK(E,F ) Fx ⊗E∗x r ⋅ s µ⊗ (σT )−1
ΛkE ΛkEx (r

k
) determinants of k × k minors of σ

detE ∶= ΛrE ΛrEx 1 detσ

Ē Ēx r σ̄.

Note: For a complex bundle E, Ē is the same underlying real bundle but with a new complex

scalar multiplication defined by

λ ⋅Ē v ∶= λ̄ ⋅E v.
Definition 32.3. We make the following definitions:

O(1) ∶= O(−1)∗

and

O(n) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(1)⊗n n ∈ N
K n = 0
O(−1)⊗∣n∣ n ∈ −N.

In the case of CP1, by Example 31.2.3, notice that the transition function of O(1) between
the stereographic charts is (z−1)−1 = z. In the case of line bundles, transition functions just

multiply under tensor product. So the transition function of O(n) is zn.
Let’s discuss two of these operations a bit more. Given a frame {eα} for E over U, there

exists a dual frame {eβ} for E∗ over U satisfying

eβ(eα)(x) = δβα
for all x ∈ U. Notice that a section α ∈ Γ(U,E∗) is equivalent to a morphism to the trivial

bundle:

E∣U → K ∣U
(x, v) ↦ (x,α(v)).

More generally, let Hom (E,F ) denote the space of bundle morphisms E → F. We have:

Proposition 32.4. Hom (E,F ) ≅ Γ(F ⊗E∗).

Proof. Given ρ ∈ Hom (E,F ), we get an element ρx ∈ Hom (Ex, Fx) ≅ Fx⊗E∗x for each x ∈X,
so a rough section of F ⊗E∗. We can check continuity in any frames, as usual. Let {eα} and
{fα} be local frames for E and F, respectively, and denote their dual frames by {eα} and
{fα}, respectively. Let

ρβα = fβ(ρ(eα)),
which is a continuous matrix-valued function. Then the section corresponding to ρ is

ρβαfβ ⊗ eα,
which is continuous. □
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Another bundle operation to mention is restriction: given a bundle π ∶ E → X and

any subspace S ⊂ X, we can obtain a bundle on S simply by restricting the projection to

π−1(S) ⊂ E and restricting the frames. (This is a special case of another operation called

pullback, perhaps the most important bundle operation, which we will save for another class.)

32.2. Subbundles. A subspace D ⊂ E is called a subbundle if Dx ⊂ Ex is a linear subspace

of dimension s for each x ∈ X, and with the induced operations, (D,X, π∣D) is a vector

bundle.

The situation is closely analogous to that of submanifolds, only simpler because the inverse

function theorem is not involved.

Lemma 32.5. A subspace D ⊂ E is a subbundle of rank s if and only if there exist local

frames for E of the form

{e1, . . . , es, es+1, . . . , er},
where {e1, . . . , es} is a local frame for D.

Proof. (⇒) Let x0 ∈ X. By assumption, there exists a local frame for D, {e1, . . . , es} as well
as a local frame ē1, . . . , ēr for E over the same neighborhood U ∋ x0. Choose i1, . . . , ir−s such
that the collection

e1(x0), . . . , es(x0), ēi1(x0), . . . , ēir−s(x0)
is a basis for Ex0 . Then these are also linearly independent on a smaller neighborhood U0 ⊂ U
with U0 ∋ x0 (since this amounts to nonvanishing of a determinant).

(⇐) This direction is trivial. □

Examples 32.6. ● Let t1, . . . , ts ⊂ Γ(E) be any set of global sections such that t1(x), . . . ts(x)
is linearly independent for each x ∈X. Then Span{t1, . . . , ts} is a subbundle.

● Let S ⊂M be a smooth submanifold. Then TS ⊂ TM ∣S is a subbundle (HW).

Proposition 32.7. Suppose ρ ∶ E → F is a bundle morphism of constant rank. Then

kerρ ⊂ E and im ρ ⊂ F are subbundles.

Proof. We prove the statement about the kernel; the statement about the image is similar.

Let x0 ∈ X. We can choose frames for E and F near x0 such that the matrix of ρ takes

the form

(A(x) B(x)
C(x) D(x))

with A(x0) = 1,C(x0) = B(x0) = D(x0) = 0. Note that row operations do not change

the kernel. Since A(x) remains invertible in a neighborhood, we can do continuous row

operations to make C(x) ≡ 0. But since the rank is constant, we must also have D(x) ≡ 0.
So, after row operations, our matrix takes the form

(A(x) B(x)
0 0

)
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A frame for the kernel is given by the columns of the matrix

(A
−1(x)B(x)
−1 ) .

□

Remark 32.8. For a constant-rank morphism, one can also define the cokernel (or quo-

tient) bundle by similar local considerations, or simply by defining

F /ρ(E) ∶= (ker(ρ∗ ∶ F ∗ → E∗))∗ .

One important instance of this is the normal bundle to a submanifold S ⊂M, defined to be

the quotient of the inclusion TS → TM ∣S . We do not have time to discuss these in greater

detail.

33. Orientation of vector bundles (Mon 11/11-Wed 11/13)

Definition 33.1. Let E →X be a real vector bundle of rank r (K = R). We say that E →X

is orientable if the determinant line bundle det(E) is trivial. (Recall that det(E) = ΛrE
by definition.) Equivalently, det(E∗) = ΛrE∗ ≅ (ΛrE)∗ is trivial.
Since det(E∗) is a line bundle, this is equivalent to admitting a global nonvanishing section.

An orientation of E is an equivalence class of global nonvanishing sections, where ω ∼ η iff

there exists a positive continuous function f ∈ C0(X) such that ω = fη.

Lemma 33.2. If X is connected and E → X is orientable, then there are exactly two

orientations of E.

Proof. Let [ω] and [η] be two orientations. Since ω is a global frame for det(E)∗, there
exists a nowhere-vanishing function f ∈ C0(X) such that ω = f ⋅ η. Since X is connected, we

either have f(x) > 0 or f(x) < 0 for all x ∈X. In the first case, [ω] = [η] , while in the second

case they define different orientations. □

Examples 33.3. ● The Möbius strip S → S1 is nontrivial (HW) and itself of rank one,

therefore not orientable. (In fact its tangent bundle is also not orientable, as we shall

see below.)

● The tangent bundle TS2 → S2 is orientable. Consider the section ω ∈ Γ ((TS2)⊗2)∗
defined by

v ⊗w ↦ 1

2
⟨x × v,w⟩ = 1

2
∣x v w∣ .

Notice that this is antisymmetric in v and w, because

∣x v w∣ = − ∣x w v∣ ,
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since permuting the columns negates the determinant. Restricting the above to a

functional on Λ2TS2 ⊂ (TS2)⊗2, we obtain

ω ∶ Λ2TS2 → R
v ∧w = v ⊗w −w ⊗ v ↦ ⟨x × v,w⟩ ,

which vanishes nowhere.

Using the determinant on Rn+1, one can show in the same way that TSn is ori-

entable for any n.

● If M is a parallelizable manifold then TM is orientable (since trivial).

● We will see below that any bundle on a simply-connected, paracompact space is

orientable (indeed, all real line bundles on a simply-connected space are trivial).

The reason for calling [ω] an “orientation” has to do with the following.

Definition 33.4. Suppose thatE is orientable and fix an orientation [ω] .A frame {e1, . . . , er}
on U is (positively) oriented if

ω(e1(x), . . . , er(x)) > 0
for all x ∈ U. If ω(e1(x), . . . , er(x)) < 0 then {e1, . . . , er} is said to be negatively oriented.

Notice that the definition is independent of the representative of [ω] .

Proposition 33.5. Suppose that X is paracompact and locally connected. Then E → X is

orientable if and only if there exists a system of local frames for E whose transition functions

all belong to GL+(r,R).

Proof. (⇒) Let ω represent the orientation and let {(Ua, eaα)} be any system of trivializations.

Since X is locally connected, by splitting up the open sets, we can assume wlog that each

open set Ua is connected. By the previous Lemma, we have either ω(ea1, . . . , ear) > 0 or

ω(ea1, . . . , ear) < 0 for each a. In the first case, do nothing, and in the second case, replace

(ea1, . . . , ear) by (ea2, ea1, ea3, . . . , ear). After this change, we have ω(ea1, . . . , ear) > 0 for each a.

Now, on Ua ∩Ub, we have

ω(ea1, . . . , ear) = ω(σabeb1, . . . , σabebr) = detσab ω(eb1, . . . , ebr).
Since both ω(ea1, . . . , ear) > 0 and ω(eb1, . . . , ebr) > 0, we must have detσab > 0, so σab ∈
GL+(r,R), as desired.

(⇐) Let {eaα} be the frames as in the statement, and let {eβa} be the dual frames. We can

define a nonvanishing section ωa ∈ Γ(Ua,det(E)∗) by
ωa = e1a ∧⋯ ∧ era.

Notice that on Ua ∩Ub, we have

ωb(ea1, . . . , ear) = ωb(σabea1, . . . , σabear) (no sum on a, b)
= detσab.

Let ρa be a partition of unity subordinate to {Ua}, and let

ω = ∑
a

ρaωa.
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For each a, we have ω(ea1, . . . , ear) = ∑b ρbωb(ea1, . . . , ear) = ∑b ρb detσab > 0. □

Corollary 33.6. The underlying real bundle of a complex line bundle is orientable.

Proof. By the previous proposition, we just need to check that in the underlying real coor-

dinate frames of a system of complex frames, the transition functions have positive determi-

nant. To obtain real frames from complex frames, we take {1, i} as our basis for C ≅ R2. Let

σ = σab = a + bi ∈ C×. Then
(σ ⋅ −) ∶ C× → C×

acts by

(a + bi) ⋅ 1 = a + bi, (a + bi) ⋅ i = −b + ai.
So the corresponding matrix is

(33.1) σR = (
a −b
b a

) .

We have detσR = a2 + b2 > 0. □

Remark 33.7. In fact, the underlying real bundle of a complex vector bundle of any rank

is orientable. This can be seen from the formula detR σR = ∣detC σ∣2.

34. Example: O(n) → CP1 (Wed 11/13)

Let us discuss the example of complex line bundles on CP1 in more detail. We first give

a geometric proof of the following fact:

Proposition 34.1. O(−1) → CP1 is nontrivial.

Proof. Suppose, for contradiction, that there exists a nowhere-vanishing global section

s ∶ CP1 → O(−1).
We can post-compose with the inclusion map into CP1 × C2 in the definition of O(−1),
followed by projection to the second factor:

CP1 s→ O(−1) → CP1 ×C2 → C2.

Since s is nowhere-vanishing, the image of this composition lies in C2 ∖ {0}. We then post-

compose with the projection map C2 ∖ {0} → CP1. In this way, we obtain a sequence of

continuous maps

CP1 → C2 ∖ {0} → CP1.

Since s was a section of the tautological bundle, the composition must be the identity map.

Taking second homology, we obtain a sequence

H2(CP1,Z) →H2(C2 ∖ {0},Z) →H2(CP1,Z)
whose composition is again the identity. However, C2 ∖{0} is homotopy equivalent to S3, so

its second homology vanishes, whereas H2(CP1) =H2(S2) = Z. The above sequence is

Z→ 0→ Z,
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so the composition is zero. We have reached a contradiction. □

Next, we want to examine the bundles O(n), given in Definition 32.3, over CP1. This is

most readily accomplished using the frame-based approach. We will rely on the following

result.

Lemma 34.2. Suppose that L and M are complex line bundles over CP1, each trivial in

the stereographic charts. Then L ≅M (if and) only if their respective transition functions

σ,µ ∶ C× → C× are homotopic.

Proof. We will only prove the “only if” direction, since the “if” direction requires a bit more

care.

Assume that L ≅M . We use the characterization of isomorphism given by Proposition

31.4. Let U± = CP1 ∖ p∓ be stereographic charts centered at antipodal points, and let x± ∈ C
be the corresponding coordinates. There exist τ± ∈ C0(U±,C×) such that

σ = τ−1− µτ+.

Consider the continuous functions from [0,1] ×U± → C× defined by

τ t± = τ±(tx±)

For t = 1, we have

τ 1±(x±) = τ±(x±),
while for t = 0, we have

τ 0±(x±) ≡ τ±(p±).
We can use these to make a homotopy

σ = τ−1− µτ+ = (τ 1−)−1µτ 1+
∼ (τ 0−)−1µτ 0+
= τ−(p−)−1µτ+(p+).

Since C× is path-connected, we can then move τ+(p+) and τ−(p−) along paths to the identity.

This gives us a homotopy

σ ∼ τ−(p−)−1µτ+(p+) ∼ µ,
as desired. □

Proposition 34.3. O(m) ≅ O(n) ⇔m = n.

Proof. From (33.1), the transition function of O(n) is given by

zn⋅ = rn (cosnθ − sinnθ
sinnθ cosnθ

) .

Restricting to the equator r = 1, we see that zn ∶ S1 → S1 represents the homotopy class

[n] ∈ π1(S1) ≅ Z. So for m ≠ n, the transition functions of O(n) and O(m) belong to

different homotopy classes. By the previous Lemma, they cannot be isomorphic. □
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Remark 34.4. The Lemma is a rudimentary form of the “clutching construction” which

produces and classifies all bundles of a given rank on Sn. The Proposition is also much more

general: it turns out that {O(m)}m∈Z are the only complex line bundles that exist on CPn,
including when holomorphic structure is taken into account.
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Part 7. Tensors and differential forms

35. Smooth bundles, tensor characterization lemma (Fri 11/15)

Definition 35.1. Let M be a smooth manifold and π ∶ E → M a vector bundle. We say

that E is smooth if E is also a smooth manifold, π is a submersion, the operations + and

⋅ are smooth on Ex for each x ∈M, and there exist smooth local frames such that the maps

(30.1) are diffeomorphisms.

All of the results of the last chapter work in the category of smooth bundles and smooth

morphisms. Henceforth we will work only with smooth bundles, smooth sections, smooth

trivializations, etc. The notation for space of sections will change to mean:

Γ(U,E) = space of smooth sections of E over U.

Meanwhile, the results of this section (and some later in the chapter) also work perfectly

well for topological bundles, but it’s time to shift our focus back to smooth manifolds.

Example 35.2. As remarked above, for a smooth manifoldM, the tangent bundle TM →M

is a smooth vector bundle.

We now make the following essentially trivial observations. Given a section s ∈ Γ(U,E)
and a smooth function f ∈ C∞(U), we can multiply these together to obtain another section

f ⋅ s ∈ Γ(U,E) given by

(f ⋅ s)(x) = f(x)s(x).
Since fg ⋅ s = f ⋅ (g ⋅ s), (f + g) ⋅ s = f ⋅ s + g ⋅ s, and f ⋅ (s + t) = f ⋅ s + f ⋅ t, this makes Γ(U,E)
into a module over the ring C∞(U).

Similarly, given a section α ∈ Γ(U,E∗), we can obtain a map

Γ(U,E) → C∞(U)
s↦ α(s),

where α(s)(x) = α(x)(s(x)). Observe that this map is C∞(U)-linear, in other words, a

module homomorphism:

α(f ⋅ s)(x) = α(x) (f(x)s(x))
= f(x)α(x)(s(x))
= (f ⋅ α(s))(x).

Having made these trivial observations, we can prove the following not-quite-trivial result.

Lemma 35.3. For any open set U ⊂M, the above map

Γ(U,E∗) → HomC∞(U) (Γ(U,E),C∞(U))
is an isomorphism.

Proof. Injectivity. Let β ∈ Γ(U,E∗) and assume that β ≠ 0. Choose x0 ∈ U such that

β(x0) ≠ 0. Then there exists v ∈ Ex0 such that β(x0)(v) ≠ 0. Choose V ⊂ U over which E

is trivial, so that we can extend v to a section over s ∈ Γ(U,E) with s(x0) = v. Let ρ be a

bump function for {x0} ⊂ V. We have

β(ρ ⋅ s)(x0) = β(x0)(ρ(x0)s(x0)) = 1 ⋅ β(x0)(v) ≠ 0.
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This shows that the homomorphism represented by β is nonzero.

Surjectivity. Suppose first that U is small enough that E is trivial over U. Let {eα} be a

local frame over U. Given τ ∈ HomC∞(U) (Γ(U,E),C∞(U)) , take

β = τ(eα)eα.

We then have

β(s) = τ(eα)eα(s)
= τ(eα)sβδαβ
= sατ(eα)
= τ(sαeα) = τ(s),

so β agrees with τ, as desired.

For the general case, suppose that U = ∪Ua with E∣Ua
trivial for each a and {Ua} locally

finite. We can assume wlog that Ua ⋐ Ûa on which E∣Ûa
is still trivial. Let {eaα} be frames

over Ûa, and {eαa} the dual frames. Multiplying by a bump functions for Ua ⋐ Ûa, we can

extend each eαa to a section ẽαa ∈ Γ(U,E∗) such that ẽαa(x) = eαa(x) for x ∈ Ua.
Choose a partition of unity {ρa} subordinate to {Ua}, and let

β = ∑
a,α

τ(ρaeaα)ẽαa .

For s ∈ Γ(U,E), we have

β(s) = ∑
a,α

τ(ρaeaα)ẽαa(s)

= ∑
a,α

s̃αaτ (ρaeaα) ,

where s̃αa ∶= ẽαa(s). This satisfies s̃αa = sαa on Ua, so that

ρas̃
α
a = ρasαa .

Applying C∞(U)-linearity of τ, we get14

β(s) = ∑
a,α

τ(ρas̃αaeaα) = ∑
a
∑
α

τ (ρasαaeaα)

= ∑
a

τ (∑
α

ρas
α
ae

a
α)

= ∑
a

τ (ρas)

= ∑
a

ρaτ (s)

= (∑
a

ρa) τ (s) = τ (s) .

□

14Thanks to Haran Mouli for pointing out after class how to save this argument.
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We now wish to generalize the above discussion to multilinear functions. Let E1, . . . ,Em
be smooth vector bundles over M. A section β ∈ Γ(E∗1 ⊗ ⋯ ⊗ E∗m), as above, induces a

C∞(M)-multilinear map

Γ(E1) ×⋯ × Γ(Em) → C∞(M)
(s1, . . . , sm) ↦ β(x)(s1(x), . . . , sm(x)).

We state the following lemma for global sections over M, but of course it remains true after

replacing M by any open subset (submanifold) U ⊂M.

Lemma 35.4 (Tensor characterization lemma). Each C∞(M)-multilinear map as above is

induced by a unique section β ∈ Γ(E∗1 ⊗⋯⊗E∗m).

Proof. The injectivity can be shown along very similar lines to the previous proof.

To show surjectivity, we use induction. The case m = 1 is the previous Lemma. Suppose

that the Lemma has been proven for m − 1, and let τ be a C∞-multilinear function on

Γ(E1) ×⋯ × Γ(Em).
As in the previous proof, let {Ua} be a locally finite cover such that there exists a system of

frames eaα for E1 over Ua, with dual frames eαa , and extend these to global sections ẽαa ∈ Γ(E∗1 ).
Also fix a partition of unity {ρa} subordinate to {Ua}.
Observe that given any section s1 ∈ Γ(E1), the function τ(s1, ⋅, . . . , ⋅) is multilinear in m−1

arguments. Let

τaα ∈ Γ(E∗2 ⊗⋯⊗E∗m)

denote the section which corresponds, by the induction hypothesis, to

τ(ρaeaα, ⋅, . . . , ⋅) (no sum on a).

Let

β = ∑
a,α

ẽαa ⊗ τaα.

We now argue as in the last proof. For si ∈ Γ(U,Ei), we have

β(s1, . . . , sm) = ∑
a,α

ẽαa(s1)τaα (s2, . . . , sn)

= ∑
a,α

(̃s1)
α

aτ (ρaeaα, s1, . . . , sn) ,

where (̃s1)
α

a ∶= ẽαa(s1). This satisfies (̃s1)
α

a = (s1)αa on Ua, so that

ρa(̃s1)
α

a = ρa(s1)αa .
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Applying C∞-multilinearity of τ, we get

β(s1, . . . , sm) = ∑
a,α

(̃s1)
α

aτ (ρaeaα, s2, . . . , sn)

= ∑
a

τ (∑
α

ρa(̃s1)
α

ae
a
α, s2, . . . , sn)

= ∑
a

τ (ρas1, s2, . . . , sn)

= ∑
a

ρaτ (s1, s2, . . . , sn)

= τ (s1, . . . , sm) .
□

36. Tensors on smooth manifolds, pullback, Lie derivative (Mon 11/18)

36.1. The definition. We now specialize to the case that Ei = TM or T ∗M for each i.

The space of (k, ℓ)-tensors is denoted by

T (k,ℓ)(M) ∶= Γ(
k

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
T ∗M ⊗⋯⊗ T ∗M ⊗

ℓ
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
TM ⊗⋯⊗ TM).

A tensor of type (k, ℓ) is called a covariant k-tensor, and a tensor of type (0, ℓ) is called

a contravariant ℓ-tensor. We have T (0,1)(M) = X (M), so a contravariant 1-tensor is a

vector field, while an element of T (1,0)(M) =∶ Ω1(M) is a covector field. In local coordinates,

an element A ∈ T (k,ℓ)(M) is given by

A
loc= Ai1⋯ik j1⋯jℓdxi1 ⊗⋯⊗ dxik ⊗

∂

∂xj1
⊗⋯⊗ ∂

∂xjk
.

By the tensor characterization lemma 35.4, an element A ∈ T (k,ℓ) is equivalent to a multilinear

map

A ∶
k

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X (M) ×⋯ ×X (M) ×

ℓ
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ω1(M) ×⋯ ×Ω1(M) → C∞(M)

(X1, . . . ,Xk, α1, . . . , αℓ) ↦ A(X1, . . . ,Xk, α1, . . . , αℓ)
loc= Ai1⋯ik j1⋯jℓ(X1)i1⋯(Xk)ik(α1)j1⋯(αℓ)jℓ .

Given two tensors A ∈ T (k1,ℓ1) and B ∈ T (k2,ℓ2), we can define the tensor product

A⊗B ∈ T (k1+k2,ℓ1+ℓ2)

simply by multiplication of C∞-multilinear functions, as in §29.2.1. We can also contract

the m’th covariant index with the n’th contravariant index:

A ∈ T (k,ℓ)(M) ↦ Trm,nA ∈ T (k−1,ℓ−1)(M)

Ai1⋯ik
j1⋯jℓ loc↦ Ai1⋯i⋯ik−1

j1⋯i⋯jℓ .
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These operations work in just the same way as they do for general vector bundles (all based

on the same operations on vector spaces).

We will now specialize to covariant tensors, since these will be the most important ones

going forward.

36.2. Pullback of covariant tensors. Let F ∶M → N be a smooth map and A ∈ T (k,0)(N)
a covariant k-tensor on N. The pullback of A by F is defined by

F ∗(A)(X1, . . . ,Xk)(p) ∶= A(dFp(X1), . . . dFp(Xk)).

This is a smooth (k,0)-tensor on M. If F (x) = (yj(xi)) in local coordinates, we have

(F ∗A)i1⋯ik =
∂yj1

∂xi1
⋯∂y

jk

∂xik
(Aj1⋯jk ○ F ) .

Note that if F is a diffeomorphism then one can also pull back (or push forward) contravariant

or mixed tensors, see Prop 18.2 above.

Example 36.1. TakeM andN to be domains in Euclidean space and k = 1, so A = αj(y)dyj.
We have

F ∗(A) = αj(y(x))
∂yj

∂xi
dxi.

We now state the following properties of pullback; you should think through the proofs as

an exercise.

Proposition 36.2. (a) F ∗(f ⋅A) = (f ○ F )F ∗A
(b) F ∗(A⊗B) = F ∗A⊗ F ∗B
(c) F ∗(A +B) = F ∗A + F ∗B
(d) (G ○ F )∗A = F ∗G∗A.

36.3. Lie derivative on tensors. Let V ∈ X (M) and θt be the flow of V. Given A ∈
T (k,0)(M), the Lie derivative of A is defined by

(LVA)p =
d

dt
∣
t=0
(θ∗tA)p = limt→0

(dθt)∗p(Aθt(p)) −Ap
t

.

This is a smooth element of T (k,0)(M).

Proof. We have θ∗tA smooth in all variables and θ∗0A = A, so the result is smooth. □

Proposition 36.3 (Properties of the Lie derivative of a covariant tensor). (a) For k = 0, we
have LV f = V (f)

(b) LV (fA) = (LV f)A + fLVA

(c) LV (A⊗B) =LVA⊗B +A⊗LVB

(d) V (A(X1, . . . ,Xk)) = (LVA)(X1, . . . ,Xk) +A(LVX1, . . . ,Xk) +⋯ +A(X1, . . . ,LVXk).
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Proof. (a) was proved in Remark 21.4 above (since (θ−1)∗ = θ∗t on functions).

(b-d) As in the proof of Theorem 21.2, we can assume without loss of generality that p

is a regular point and V = ∂
∂u1 in some coordinates u1, . . . , un near p. Then the flow of V is

translation by t in the first variable, so

(LVA)i1⋯ik =
∂Ai1⋯ik
∂u1

.

The stated properties all follow from the ordinary Leibniz rule. □

Corollary 36.4. (LVA)(X1, . . . ,Xk) = V (A(X1, . . . ,Xk)) − A([V,X1] ,X2, . . . ,Xk) − ⋯ −
A(X1, . . . , [V,Xk]).

Corollary 36.5.

LV (df) = d(LV f)

Proof.

(LV df)(X) = V (df(X)) − df([V,X])
= V (X(f)) − V (X(f)) +X(V (f))
= d(V f)(X)
= d(LV f)(X).

□

Remark 36.6. This result will generalize below to differential forms.

Example 36.7. Let A = Aijdxi ⊗ dxj ∈ T (2,0)(M). Let V = V i ∂
∂xi
, so that LV (dxi) = d(V i)

by the previous corollary. We have

LVA = V (Aij)dxi ⊗ dxj +AijdV i ⊗ dxj +Aijdxi ⊗ dV j

= (V (Aij) +Akj
∂V k

∂xi
+Aik

∂V k

∂xj
)dxi ⊗ dxj.

A similar formula exists in general.

Last, we want to give the generalization of Proposition 22.2.

Lemma 36.8. d
dt
∣
t=t0
(θt)∗A = (θt0)

∗LVA.

Proof. The proof is the same as that of Lemma 22.1. □

Proposition 36.9. A is invariant under θt if and only if LVA = 0.

37. Differential forms (Mon 11/18-Wed 11/20)

37.1. The definition. A differential k-form is an alternating covariant k-tensor. We let

Ωk(M) ∶= Γ(ΛkT ∗M) ⊂ Γ((T ∗M)⊗k) = T (k,0)(M)
denote the space of k-forms, so ω ∈ Ωk(M) satisfies

ω(X1, . . . ,Xi, . . . ,Xj, . . . ,Xk) = −ω(X1, . . . ,Xj, . . . ,Xi, . . . ,Xk)
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for each 1 < i ≠ j < k.
The wedge product ∧ ∶ Ωk ×Ωℓ → Ωk+ℓ on differential forms is inherited from the wedge

product on vector spaces described above, and can be written:

ω ∧ η = (k + ℓ)!
k!ℓ!

Alt (ω ⊗ η).

This is C∞-bilinear and associative, and satisfies

ω ∧ η = (−1)kℓη ∧ ω,

where the factor is the sign of the permutation which takes the first k arguments to the last

k arguments. As we explained briefly in the section on linear algebra, the coefficient is rigged

so that

(37.1) dx1 ∧⋯ ∧ dxk = ∑
σ∈Sk

sgnσ dxσ(1) ⊗⋯⊗ dxσ(k),

which gives the convenient normalization

dxi1 ∧⋯ ∧ dxik ( ∂

∂xi1
, . . . ,

∂

∂xik
) = 1.

More generally, for a multi-index (i1, . . . , ik) with distinct elements, we have

dxi1 ∧⋯ ∧ dxik ( ∂

∂xj1
, . . . ,

∂

∂xjk
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sgn
⎛
⎝
i1 i2 ⋯ ik

j1 j2 ⋯ jk

⎞
⎠
{i1, . . . , ik} = {j1, . . . , jk}

0 otherwise.

Example 37.1.

ydx ∧ dz ( ∂
∂z
,
∂

∂x
) = −y,

ydx ∧ dz ( ∂
∂x
,
∂

∂y
) = 0.

Here is a useful general formula:

Lemma 37.2. Let ω1, . . . , ωk ∈ Ω1(M) and X1, . . . ,Xk ∈X (M). We have

ω1 ∧⋯ ∧ ωk(X1, . . . ,Xk) = det (ωi(Xj)) .

Proof. As in (37.1), we have

ω1 ∧⋯ ∧ ωk = ∑
σ∈Sn

sgnσ ωσ(1) ⊗⋯⊗ ωσ(k).

We get

ω1 ∧⋯ ∧ ωk(X1, . . . ,Xk) = ∑
σ∈Sk

sgnσ ωσ(1)(X1)⋯ωσ(k)(Xk),

which is the desired expression. □

We can summarize this discussion as follows.
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Proposition 37.3. Let {ei}ni=1 be a local coframe, i.e., a local frame for T ∗M. Then

{ei1 ∧⋯ ∧ eik ∣ i1 < ⋯ < ik}
is a local frame for ΛkT ∗M. In particular, if {xi} are any local coordinates, the set

{dxi1 ∧⋯ ∧ dxik ∣ i1 < ⋯ < ik}
forms a local frame for ΛkT ∗M, in which any differential form can be uniquely written as

ω
loc= ∑

I

′

ωIdx
I ,

where I = (i1, . . . , ik) is a multi-index, ωI = ωi1⋯ik , dxI = dxi1 ∧ ⋯ ∧ dxik , and ∑′I = ∑i1<⋯<ik
denotes the sum over strictly increasing multi-indices.

37.2. Interior product. Another important operation is the interior product

ι ∶X (M) ×Ωk(M) → Ωk−1(M)
(X,ω) ↦ ιXω =X ⌟ ω = ω(X,−, . . . ,−).

Example 37.4. ιx ∂
∂y
(dx ∧ dy) = −xdx.

Proposition 37.5 (Properties of ιX). (a) ιX ○ ιX = 0
(b) ιX(ω ∧ η) = (ιXω) ∧ η + (−1)kω ∧ ιXη.

Proof. (a) is obvious from the alternating property.

For (b), it suffices by bilinearity of both sides in ω and η to consider the case that both ω

and η are decomposable. Let ω = ω1∧⋯∧ωk and η = ωk+1∧⋯∧ωm, so that ω∧η = ω1∧⋯∧ωm.
Inspection shows that the desired formula follows from the general formula

(37.2) ιX (ω1 ∧⋯ ∧ ωm) =
m

∑
i=1
(−1)i−1ωi(X)ω1 ∧⋯ ∧ ω̂i ∧⋯ ∧ ωm.

To check (37.2), let X1 = X and let X2, . . . ,Xm be arbitrary. Let Ω = (ωi(Xj)). By Lemma

37.2, the LHS is equal to det(Ω). Meanwhile, again by Lemma 37.2, the RHS is equal to the

expansion by minors along the first column of the determinant of Ω, so the two are equal. □

Remark 37.6. An operation satisfying (b) is called a graded derivation (or sometimes

an anti-derivation, as in Lee’s book).

37.3. Pullback of forms. Pullback, which we know already for general covariant tensors,

is a key operation on differential forms. Here are its properties:

Proposition 37.7. (a) F ∗ (ω ∧ η) = F ∗ω ∧ F ∗η.
(b) Let F ∶M → N and ω ∈ Ωk(N). Let {xi} be local coordinates on M and {yi} be local

coordinates on N. We have

F ∗ω = ∑
j1<⋯<jk

(ωj1⋯jk ○ F )d(yj1 ○ F ) ∧⋯ ∧ d(yjk ○ F ).
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(c) If k = n = dim(M) = dim(N) and ω = udy1 ∧⋯ ∧ dyn, then we further have

F ∗ω = (u ○ F )det(DF )dx1 ∧⋯ ∧ dxn,

where DF = (∂yj
∂xi
) denotes the Jacobian matrix of y = F (x).

Proof. (a) This follows from the definition, since F ∗ commutes with tensor product and Alt .

(b) First note that F ∗(udyj) = (u ○ F )∂yj
∂xi
dxi = (u ○ F )d(yj ○ F ) by Example 36.1 and the

chain rule. The general result follows by applying (a) to the multiple tensor product.

(c) Since the top wedge powers are one-dimensional, it suffices to evaluate both sides on

( ∂
∂x1 , . . . ,

∂
∂xn ). By (b), we get

LHS ( ∂

∂x1
, . . . ,

∂

∂xn
) = (u ○ F ) ∂y

1

∂xi1
⋯ ∂y

n

∂xin
dxi1 ∧⋯ ∧ dxin ( ∂

∂x1
, . . . ,

∂

∂xn
)

= (u ○ F )sgn (i1⋯in)
∂y1

∂xi1
⋯ ∂y

n

∂xin

= (u ○ F )det(DF )

= RHS ( ∂

∂x1
, . . . ,

∂

∂xn
) .

□

Example 37.8. Let F ∶ (r, θ) ↦ (x, y) = (r cos θ, r sin θ) be the polar coordinate chart. By

(b), we have

F ∗ (dx ∧ dy) = d(r cos θ) ∧ d(r sin θ)
= (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ)
= r (cos2(θ) + sin2(θ))dr ∧ dθ
= rdr ∧ dθ.

Meanwhile, we have the Jacobian

DF = (cos θ −r sin θ
sin θ r cos θ

)

with det(DF ) = r, so the pullback computed by (c) agrees with the answer from (b).

38. The exterior derivative (Wed 11/20-Fri 11/22)

38.1. The case of an open set in Rn. Let M = U ⊂ Rn be an open subset. Then any

differential form is written uniquely as

ω = ∑
I

′

ωIdx
I

for ωI ∈ C∞(M). (Recall the notation ∑′I from Proposition 37.3.) We define the exterior

derivative

dω ∶= ∑
I

′

dωI ∧ dxi1 ∧⋯ ∧ dxik
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globally on U.

Proposition 38.1 (Properties of the exterior derivative on Rn). (a) d is R-linear, i.e. linear
over constant functions.

(b) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη
(c) d ○ d = 0
(d) If F ∶ U ⊂ Rm → V ⊂ Rn is smooth, then

F ∗dω = dF ∗ω.

Proof. (a) This is obvious.

(b) We should first check that the formula remains true after replacing ∑′I by the ordinary

sum ∑I over general indices (because wedge product will not respect increasing-ness). It

suffices to check that the formula is true for ω = udxI , where I = (i1, . . . , ik) is not necessarily
increasing. Let σ ∈ Sk be the permutation such that iσ(1) < ⋯ < iσ(k) is increasing. We have

ω = sgnσudxσ(I),

so that by definition, we have

dω = d(sgnσu) ∧ dxσ(I)

= du ∧ (sgnσdxσ(I))
= du ∧ (sgnσ)2 dxI

= du ∧ dxI

as desired.

Now, to check (b), we can compute

d(ω ∧ η) = d(uvdxI ∧ dxJ)
= (vdu + udv) ∧ dxI ∧ dxJ

= dω ∧ dxJ + (−1)kω ∧ dη.

(c) We first check the case k = 0. We have

d(du) = d( ∂u
∂xj

dxj)

= ∂2u

∂xi∂xj
dxi ∧ dxj

= ∑
i<j
( ∂2u

∂xi∂xj
− ∂2u

∂xj∂xi
)dxi ∧ dxj = 0

since second partials commute.
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For general k, letting ω = ∑′I ωIdxI , we have

d2ω =
′
∑
I

d(dωI ∧ dxI)

=
′
∑
I

d2(ωI) ∧ dxI + (−1)k+1dωI ∧ d(dxI).

The first term is zero by the k = 0 case. The second term contains elements of the form

d(dxI) = d(dxi1 ∧⋯ ∧ dxik) = d(dxi1) ∧⋯ ∧ dxik − dxi1 ∧ d(dxi2) ∧⋯ ∧ dxik +⋯

which is again zero by the k = 0 case, so the entire expression vanishes.

(d) We may let ω = udxI without loss of generality. We have

LHS = F ∗(d(udxI)) = F ∗(du ∧ dxi1 ∧⋯ ∧ dxik) = d(u ○ F ) ∧ d(xi1 ○ F ) ∧⋯ ∧ d(xik ○ F )

by Proposition 37.7(b). Meanwhile, we have

RHS = d ((u ○ F ) ∧ d(xi1 ○ F ) ∧⋯ ∧ d(xik ○ F )) = d(u ○ F ) ∧ d(xi1 ○ F ) ∧⋯ ∧ d(xik ○ F ),

so the two sides agree. □

38.2. The general case. The following result is fundamental.

Theorem 38.2. Let M be a smooth manifold of dimension n. There exist maps d ∶ Ωk(M) →
Ωk+1(M) for k = 0, . . . , n − 1 which are uniquely characterized by

(i) d is linear over constant functions

(ii) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

(iii) d ○ d = 0

(iv) For f ∈ Ω0(M) = C∞(M), df is the ordinary differential of f, given by df(X) =X(f).

Proof. Let φ ∶ U → Û ⊂ Rn be any coordinate chart, and define

dω = φ∗d ((φ−1)∗ω) ,

where d is the exterior derivative in Û defined above. We must check that this definition is

independent of the coordinate chart; let ψ be another chart. We calculate:

ψ∗d ((ψ−1)∗ω) = ψ∗d ((ψ−1)∗(φ−1φ)∗ω)
= ψ∗d ((ψ−1)∗φ∗(φ−1)∗ω)
= ψ∗d ((φψ−1)∗(φ−1)∗ω) .
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We now apply Proposition 38.1d to pass the transition map through the exterior derivative

(on Rn), to obtain

ψ∗d ((ψ−1)∗ω) = ψ∗ (φψ−1)∗ d ((φ−1)∗ω)
= ψ∗(ψ−1)∗φ∗d ((φ−1)∗ω)
= φ∗d ((φ−1)∗ω) .

So the definition is independent of the coordinate chart.

To show uniqueness, we first need to show that any operator d satisfying (i-iv) is locally

determined. Let ω1 and ω2 be forms with ω1 = ω2 on an open set U, and let p ∈ U. Choose a

bump function ψ for {p} ⊂ U. We have

0 = d (ψ(ω1 − ω2)) = dψ ∧ (ω1 − ω2) + ψd(ω1 − ω2).
Evaluating at p, we get dω1(p) = dω2(p). Since p ∈ U was arbitrary, dω1 = dω2 on U.

Now, by extending ωI and xi to global functions (as in the proof of Lemma 35.4) and

using (i-iv), we can see that d must satisfy

dω = d(∑
I

′

ωIdx
I) = ∑

I

′

dωI ∧ dxI ,

so agrees with the exterior derivative already defined. □

Proposition 38.3. F ∗dω = dF ∗ω

Proof. This follows from Proposition 38.1d and a similar manipulation to the previous proof

(exercise). □

Definition 38.4. ω ∈ Ωk(M) is closed if dω = 0. ω is exact if ω = dη for η ∈ Ωk−1(M).
Notice that exact implies closed, but we will see below that the converse is not always true.

Example 38.5 (Lee, Example 14.27). Let M = R3. The standard volume form is dV =
dx ∧ dy ∧ dz. We have the following standard isomorphisms:

♭ ∶X (R3) → Ω1(R3)

X i ∂

∂xi
↦∑

i

X idxi

β ∶X (R3) → Ω2(R3)
X ↦ ιXdV

∗ ∶ C∞(R3) → Ω3(R3)
f ↦ f dV.

One can check (exercise) that the three standard operators grad, curl, and div are the ones

that make the following diagram commute:

C∞(M) grad
//

Id
��

X (M) curl
//

♭
��

X (M) div
//

β
��

C∞(M)
∗
��

Ω0(R3) d
// Ω1(R3) d

// Ω2(R3) d
// Ω3(M).
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As a consequence, we get the vector calculus identities curl ○ grad = 0 and div ○ curl = 0.

38.3. Invariant formula for d. Having described it explicitly in local coordinates and

shown that it exists globally, we should also find a global/tensorial formula for the exterior

derivative. We begin with the case of a 1-form.

Proposition 38.6. Let α ∈ Ω1(M) be a 1-form. For vector fields X and Y, we have

(dα)(X,Y ) =X(α(Y )) − Y (α(X)) − ω([X,Y ]).

Proof. We may let α = udv without loss of generality (by R-linearity). We then have

dα = du ∧ dv,

so

LHS(X,Y ) = dα(X,Y ) =X(u)Y (v) − Y (u)X(v).
We also have

RHS(X,Y ) =X(u(Y (v)) − Y (u(X(v)) − u [X,Y ] (v).
By the Leibniz rule, these agree. □

The general formula is somewhat trickier.

Theorem 38.7.

dω(X1, . . . ,Xk+1) =
k+1
∑
i=1
(−1)i−1Xi(ω(X1, . . . , X̂i, . . . ,Xk+1))

+ ∑
1≤i<j≤k+1

(−1)i+jω([Xi,Xj] ,X1, . . . , X̂i, . . . , X̂j, . . . ,Xk+1).

Proof. We will give a much shorter proof than the one in Lee, based on a mild abuse of

notation. Working in a coordinate chart, we write

X(Y ) =X i∂Y
j

∂xi
∂

∂xj
.

The fact that this expression is coordinate-dependent is immaterial, since the final answer

will be coordinate-independent.

We write ω = ωIdxI , so that dω = dωI ∧ dxI . Notice that

X(ωI)dxI(Y1, . . . , Yk) =X(ω(Y1, . . . , Yk))
− ω(X(Y1), Y2, . . . , Yk)
−⋯−
− ω(Y1, Y2, . . . ,X(Yk))

=X (ω(Y1, . . . , Yk)) −
k

∑
j=1
(−1)j−1ω (X(Yj), Y1, . . . , Ŷj, . . . , Yk) .

(38.1)
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Now, applying a formula similar to (37.2), followed by (38.1), we may write

dω(X1, . . . ,Xk+1) =
k+1
∑
i=1
(−1)i−1Xi(ωI)dxI (X1, . . . , X̂i, . . .Xk+1)

=
k+1
∑
i=1
(−1)i−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Xi (ω(X1, . . . , X̂i, . . . ,Xk+1))

−
i−1
∑
j=1
(−1)j−1ω (Xi(Xj), . . . , X̂j, . . . , X̂i, . . . ,Xk+1)

+
k+1
∑
j=i+1
(−1)j−1ω (Xi(Xj), . . . , X̂i, . . . , X̂j, . . . ,Xk+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Here, the sign changes after X̂j passes X̂i because of the omitted index. The desired formula

now follows by relabeling j and i in the second sum and combining Xi(Xj) − Xj(Xi) =
[Xi,Xj] . □

39. Cartan’s magic formula (Fri 11/22)

Lemma 39.1. LV (ω ∧ η) =LV ω ∧ η + ω ∧LV η.

Proof. This follows from the same property of the tensor product, Proposition 36.3. □

Theorem 39.2 (Cartan’s magic formula). LV ω = (d ○ ιV + ιV ○ d)ω.

Proof. For the case of a 0-form, we have LV f = V (f) = V ⌟ df, which is the desired formula

(since V ⌟ f = 0).
Assume that the formula has been proven up to k − 1-forms. Assume without loss that

ω = df ∧ β, which can be achieved by absorbing the “coefficient out front” into β. Then the

LHS of the formula is

LV ω =LV df ∧ β + df ∧LV β

dV (f) ∧ β + df ∧ (V ⌟ dβ + d(V ⌟ β)) .
The RHS is

V ⌟ d(df ∧ β) + d(V ⌟ (df ∧ β)) = V ⌟ (−df ∧ dβ) + d (V (f)β − df ∧ (V ⌟ β))
= −V (f)dβ + df ∧ (V ⌟ dβ) + d(V (f)) ∧ β
+ V (f)dβ + df ∧ d(V ⌟ β).

Cancelling the V (f)dβ terms on the expression for the RHS, we see the same three terms

as in the expression for the LHS. □

Remark 39.3. A slightly longer but perhaps more satisfying proof is based on the obser-

vation that both the LHS and RHS are derivations on Ω∗(M), in the sense of the Lemma,

which agree on 0-forms and on exact 1-forms.

Corollary 39.4. LV dω = dLV ω.

Proof. By Cartan’s formula, the LHS is equal to d(V ⌟ dω), as is the RHS. □
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Part 8. De Rham cohomology

40. The de Rham complex (Fri 11/22-Mon 11/25)

On any smooth manifold M, we have constructed the de Rham complex

0→ Ω0(M) d→ Ω1(M) d→ ⋯ d→ Ωn(M) → 0.

This a sequence of infinite-dimensional real vector spaces (if n ≥ 1) in which the composition

d ○ d = 0. As for any complex, we may form the cohomology groups

Hk
dR(M) ∶=

kerd ∶ Ωk(M) → Ωk+1(M)
im d ∶ Ωk−1(M) → Ωk(M) .

These are called the de Rham cohomology groups of M.

Since d commutes with the pullback operation, we can in fact say that Hk
dR(⋅) is a con-

travariant functor from the category of smooth manifolds and maps to the category of

R-vector spaces. This just means that a smooth map F ∶ M → N induces a linear pull-

back map F ∗ ∶ Hk
dR(N) → Hk

dR(M), and that these maps are compatible with composition

(F ○G)∗ = G∗ ○ F ∗ and respect the identity 1∗ = 1.
In fact, the deRham groups have a much stronger invariance property.

Theorem 40.1. Suppose that F,G ∶M → N are smooth maps which are (smoothly) homo-

topic, i.e., there exists a smooth map Ht ∶ M × [0,1] → N such that H0 = F and H1 = G.
Then

F ∗ = G∗ ∶Hk
dR(N) →Hk

dR(M).

Proof. Let ω be a closed k-form on N. Put ω̃ = H∗ω ∈ Ωk(M × [0,1]), which is again

closed. Let it ∶ M → M × {t} ⊂ M × [0,1] denote the inclusion map of a time-slice. Write

ωt = i∗t ω̃ =H∗t ω.
Define a k − 1-form on M by

η ∶= ∫
1

0
i∗t (

∂

∂t
⌟ ω̃) dt.

We calculate

dη = ∫
1

0
d(i∗t (

∂

∂t
⌟ ω̃))dt

= ∫
1

0
i∗t d((

∂

∂t
⌟ ω̃))dt,

since pullback commutes with d. Since ω is closed, we have ∂
∂t ⌟dω̃ = 0. By Cartan’s formula,

we obtain

dη = ∫
1

0
i∗tL ∂

∂t
ω̃ dt

= ∫
1

0

d

dt
ωt dt

= ω1 − ω0

= G∗ω − F ∗ω.



126 ALEX WALDRON

Taking de Rham classes of both sides, we get

[G∗ω] = [F ∗ω] + [dη] = [F ∗ω] ,
as claimed. □

Remark 40.2. By the Whitney approximation theorem, we can remove “(smooth)” from

the statement: two smooth maps are homotopic (via a continuous map) if and only if they

are homotopic via a smooth map. Note that the only homotopies we plan to consider will

be smooth or at least piecewise smooth.

Recall that a continuous map f ∶ X → Y between topological spaces is called a homotopy

equivalence if it has a homotopy inverse, i.e., a map g ∶ Y → X such that g ○ f ≃ 1X and

f ○ g ≃ 1Y .

Corollary 40.3. If M and N are (smoothly) homotopy equivalent, then Hk
dR(M) ≅Hk

dR(N)
for all k.

Proof. If there exist smooth maps F and G as in the definition just given, then F ∗ ○G∗ =
1∗ = 1, and similarly for G∗ ○ F ∗, so the induced maps on cohomology are isomorphisms.

(One can also approximate a continuous homotopy equivalence by a smooth one to obtain

the same result.) □

Corollary 40.4. If M is (smoothly) contractible, then Hk
dR(M) = 0 for all k ≥ 1.

Note: One always has H0
dR(M) = Ππ0(M)R, where the direct product runs over all the

connected components of M.

Corollary 40.5 (Poincaré Lemma). Let U ⊂ Rn be a star-shaped open set. We have

Hk
dR(U) = 0 for k ≥ 1. For example, the de Rham groups of Rn,Hn, and Bn all vanish

for k ≥ 1. In particular, every closed form is exact!

Example 40.6. Let M = S1. Consider the closed 1-form “dθ,” which is in quotation marks

because θ is only well-defined on S1 modulo 2π. This form is not exact, because ∫
2π

0 dθ = 2π
whereas for any function f on S1 we must have

∫
2π

0
df = ∫

2π

0
f ′(θ)dθ = f(2π) − f(0) = 0.

So the class [dθ] is nonzero in H1
dR(S1).

Claim. H1
dR(S1) = ⟨[dθ]⟩ ≅ R.

Proof of claim. Let α be a closed 1-form. Since dθ ≠ 0 pointwise, we have α = f(θ)dθ for

some function f(θ). Let
c = 1

2π ∫
2π

0
f(θ)dθ

and

g(t) = ∫
t

0
(f(t) − c) dt.

Then

g(2π) = ∫
2π

0
f(θ)dθ − 2πc = 0 = g(0),
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so that g is continuous (indeed, smooth) on S1. By the fundamental theorem of calculus, we

have

dg = ∂g
∂θ
dθ = f(θ)dθ − cdθ = α − cdθ.

Taking de Rham classes of both sides, we get

[α] = c [dθ] .
◇

We conclude that

Hk
dR(S1) =

⎧⎪⎪⎨⎪⎪⎩

R k = 0,1
0 otherwise.

Example 40.7. LetM = R2∖{0}. This is (smoothly) homotopy equivalent to S1, as follows:

let ι ∶ S1 → R2 ∖ {0} be the inclusion and π ∶ R2 ∖ {0} → S1 the map sending x ↦ x
∣x∣ . The

composition π ○ ι is equal to the identity, while we can make a smooth homotopy

Ht(x) = tx + (1 − t)
x

∣x∣
with H0 = ι ○ π and H1 = 1. We conclude that

Hk
dR(R2 ∖ {0}) ≅Hk

dR(S1) =
⎧⎪⎪⎨⎪⎪⎩

R k = 0,1
0 otherwise.

This is interesting because the manifolds in question do not even have the same dimension.

The idea behind these examples generalizes as follows.

Theorem 40.8 (De Rham Theorem in 1d). Let M be a connected smooth manifold and

p ∈M. The “de Rham map”

Φ ∶H1
dR(M) → Hom (π1(M,p),R)

[α] ↦ Φ [α] [γ] = ∫
γ
α

is well-defined and injective (indeed, an isomorphism). Here, we define

∫
γ
α ∶= ∫

2π

0
g(θ)dθ, where γ∗α = g(θ)dθ.

Proof. We will prove the well-definedness and leave the injectivity as an exercise (sketched

in class, on HW13). The fact that the map is an isomorphism is deeper and we will not quite

have time to prove it in 761.

To show that the map is well-defined, we have to check that it is independent both of

the representative of [α] ∈ H1
dR(M) and of [γ] ∈ π1(M,p). If α1 = α2 + df, for f ∈ C∞(M),

then γ∗α1 = γ∗α2 + d(f ○ γ), so their integrals over S1 agree. If γ1 ≃ γ2 ∶ S1 → M are

homotopic paths, then by Theorem 40.1, we have γ∗1α = γ∗2α + dg, so the integrals over S1

again agree. □

Corollary 40.9. Suppose that M has finite fundamental group. Then any closed 1-form on

M is exact.
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Proof. Since there are no nonzero homomorphisms from a finite group to R, the image of

any closed form under the de Rham map is zero. By injectivity, it is exact. □

We will define the de Rham map in all dimensions after Thanksgiving.

41. The Mayer-Vietoris sequence (Wed 11/27)

Today we will describe a general method to compute the de Rham groups of a manifold,

M, by breaking it up into smaller pieces.

Suppose that M = U ∪ V, where U and V are both open. We have a diagram of smooth

maps

U
k

  

U ∩ V

i

<<

j

""

M,

V

ℓ
>>

which are just the relevant restriction maps. This gives us a diagram of vector spaces

Ωp(U)

i∗xx

Ωp(U ∩ V ) Ωp(M).
k∗

ee

ℓ∗yy

Ωp(V )
j∗

ff

From this, we can form the sequence

(41.1) 0→ Ωp(M) k
∗⊕ℓ∗Ð→ Ωp(U) ⊕Ωp(V ) i

∗−j∗Ð→ Ωp(U ∩ V ) → 0.

This sequence is exact. For, the second map is clearly injective, since a form in M vanishes

if and only if its restrictions to U and V both vanish. The kernel of the third map is equal to

the image of the second map because (η, µ) ∈ Ωp(U)⊕Ωp(V ) comes from a form ω ∈ Ωp(M)
if and only if ηU∩V = µ∣U∩V . To show surjectivity of the last map, let {ρ,ψ} be a partition of

unity subordinate to {U,V }. Given λ ∈ Ωp(U ∩ V ), put

η =
⎧⎪⎪⎨⎪⎪⎩

ψλ on U ∩ V
0 on U ∖ V

and

µ =
⎧⎪⎪⎨⎪⎪⎩

−ρλ on U ∩ V
0 on V ∖U.

These are smooth forms on U and V, respectively, and we have

(i∗ − j∗)(η, µ) = ψλ + ρλ = (ψ + ρ)λ = λ,
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as required.

We have shown that (41.1) is a short exact sequence of groups; in fact, because these

restriction maps all commute with d, we can put the full de Rham complexes together into

a short exact sequence of complexes

(41.2) ⋮

��

⋮

��

⋮

��

0 // Ωp(M) k∗⊕ℓ∗
//

d
��

Ωp(U) ⊕Ωp(V ) i
∗−j∗

//

d⊕d
��

Ωp(U ∩ V ) //

d
��

0

0 // Ωp+1(M) k∗⊕ℓ∗
//

��

Ωp+1(U) ⊕Ωp(V )i
∗−j∗

//

��

Ωp+1(U ∩ V ) //

��

0,

⋮ ⋮ ⋮

where the whole diagram commutes. The snake lemma, which is a purely algebraic fact,

says that any short exact sequence of complexes of abelian groups (or elements of any abelian

category) gives rise to a long exact sequence of cohomology groups:

(41.3) ⋯ →Hp−1(U ∩V ) δ→Hp(M) k
∗⊕ℓ∗→ Hp(U) ⊕Hp(V ) i

∗−j∗→ Hp(U ∩V ) δ→Hp+1(M) → ⋯.

Here, δ is the so-called connecting homomorphism, which is gotten by tracing through

the diagram as explained in class. In this situation, we have explicitly

δ([λ]) =
⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩

d(ψλ) on U
−d(ρλ) on V

⎤⎥⎥⎥⎥⎦
.

This form is closed, since it is locally exact, so defines a cohomology class; but it may not be

globally exact, i.e. δ([λ]) may be nonzero in Hp+1(M). You are encouraged to think through

the diagram chase involved in proving the snake lemma, if you have not done so recently.

We can summarize this discussion as follows.

Theorem 41.1. For any decomposition M = U ∪V, the de Rham cohomology groups form a

long exact sequence as in (41.3), called the Mayer-Vietoris sequence.

Theorem 41.2. For n ≥ 1, we have Hp
dR(Sn) =

⎧⎪⎪⎨⎪⎪⎩

R p = 0, n
0 otherwise.

Proof. We proceed by induction on n. The case n = 1 was proved in Example 40.6. Let n ≥ 2
and suppose the result has been proved up to n − 1. We take U and V to be the standard

stereographic charts, both diffeomorphic to Rn, so that their de Rham groups vanish except

in degree zero. Then U ∩ V is diffeomorphic to Rn ∖ {0}, which deformation-retracts onto

Sn−1, so by induction we have

Hp
dR(U ∩ V ) =

⎧⎪⎪⎨⎪⎪⎩

R p = 0, n − 1
0 otherwise.
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Since Sn is connected, we know that H0
dR(Sn) = R. The first part of the Mayer-Vietoris

sequence is

0→ R→ R⊕R→ R→H1
dR(Sn) → 0→ ⋯,

with the third map surjective, so that H1
dR(Sn) = 0. There later parts of the sequence look

like

0→Hp−1
dR (Sn−1) →Hp

dR(Sn) → 0,

where p ≥ 2. This gives the desired result. □

Corollary 41.3. For n ≥ 2, we have Hp
dR (Rn ∖ {0}) ≃

⎧⎪⎪⎨⎪⎪⎩

R n = 0, n − 1
0 otherwise.

Proof. We have a (smooth) deformation retraction Rn ∖ {0} → Sn−1, so the result follows

from the previous theorem. □

Corollary 41.4. Let U ⊂ Rn, n ≥ 2, be a nonempty open set. For any x ∈ U, we have

Hn−1
dR (U ∖ {x}) ≠ 0.

Proof. Choose a small sphere S ≅ Sn−1 centered at x and contained in U. Let π ∶ U ∖{x} → S

be the restriction of the usual retraction from Rn ∖ {x} to S, and ι ∶ S → U the inclusion

map. We have π ○ ι = 1S. Applying the de Rham functor to the sequence of smooth maps

S
ι→ U ∖ {x} π→ S,

we obtain a sequence

R ≅Hn−1
dR (S) ←Hn−1

dR (U ∖ {x}) ←Hn−1
dR (S) ≅ R.

Since the composition must be the identity, the middle group must be nonzero. □

Remark 41.5. This proof can be compared with that of Proposition 34.1, where we could

have used de Rham cohomology in place of singular homology.

Corollary 41.6 (Topological invariance of dimension). Suppose that M and N are topo-

logical manifolds of dimension m and n, respectively. If M and N are homeomorphic then

m = n.
Proof. Assume for contradiction that m > n. Let x ∈M be arbitrary. Choose V ∋ x with V

homeomorphic to Rm. By assumption, there also exists U ⊂ V with U ∋ x such that U is

homeomorphic to Rn.

First give U the smooth structure coming from the homeomorphism to Rm. Sincem−1 ≥ n,
we have Hm−1

dR (U∖{x}) =Hm−1
dR (Rn∖{0}) = 0 by the first corollary above. On the other hand,

we can give V the smooth structure coming from the homeomorphism with Rn, and let Ũ be

the induced smooth structure on U from the inclusion U ⊂ V. By the last corollary, we have

Hm−1
dR (Ũ ∖ {x}) ≠ 0. But U and Ũ are both smooth manifolds, and they are homeomorphic.

By the Whitney approximation theorem (skipped, see Lee for statement and proof), there

exists a pair of smooth maps giving a smooth homotopy equivalence between U and Ũ. The

above calculation violates the invariance of the de Rham groups under smooth homotopy

equivalence.15 □

15Indeed, by this argument, they are invariant under general homotopy equivalence.
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Part 9. Integration of differential forms

42. Motivation (Mon 12/2)

The moral of Example 40.6-Theorem 40.8 was that de Rham cohomology is intimately

related to integration; we need to learn how to integrate on manifolds.

Let us begin with some motivating discussion. We saw above that for a path γ ∶ [0,1] →M,

we can form the integral

∫
γ
α ∶= ∫

1

0
γ∗α = ∫

1

0
α(γ′(t))dt.

Let us point out (again) that this object is actually invariant under reparametrization of γ.

Let u ∶ [0,1] → [0,1] be an increasing diffeomorphism and γ̃(t) = γ(u(t)). By the change-of-

variable formula from beginning calculus, we have

∫
γ̃
α = ∫

1

0
α(γ̃′(t))dt = ∫

1

0
α(γ′(u(t))u′(t))dt = ∫

1

0
α(γ′(u(t)))u′(t)dt = ∫

1

0
α(γ′(u))du.

Therefore the integral is in fact independent of the parametrization of the path from zero

to one. This suggests that the quantity ∫γ α represents something like “displacement” along

the path γ, i.e., a signed measure of the length of γ. More strikingly, if the form α happens

to be closed, then the integral is also invariant under homotopies of the path that fix the

endpoints, by the proof of Theorem 40.8; this can also be seen using the classical Green’s

theorem. (In the case that the codomain manifold M has dimension one, all 1-forms are

closed, which gives another way to explain the invariance under general reparametrizations

of the domain.)

Let us also discuss the case of top forms (k = n) geometrically. We have seen above that

dx1 ∧⋯ ∧ dxn(v1, . . . , vn) = ∣v1 ⋯ vn∣ .

It is usually shown in a linear algebra class that this is equal to ± the volume of the parallelip-

iped spanned by v1, . . . , vn, where ± is determined by whether or not {v1, . . . , vn} corresponds
to the standard orientation of Rn. (This can be proved by observing that row operations cor-

respond to surgeries on the parallelipiped of the type we know from the 2D case, which do

not change the volume, and by which one can reduce to the case of an n-dimensional rec-

tangle.) So differential forms of general dimension measure (signed) volume, which should

have something to do with integration.

This discussion suggests that differential forms are indeed the right things to try to inte-

grate over manifolds, although we have already seen that there will be a subtlety involving

signs.

43. Integration on Rn (Mon 12/2)

We begin by defining the integral of an n-form on Rn. Recall that any top form is propor-

tional to dx1 ∧⋯ ∧ dxn at each point.
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Definition 43.1. Let D ⊂ Rn be an open domain of integration, i.e. an open set whose

boundary has measure zero. Given a top form ω = fdx1 ∧ ⋯ ∧ dxn for which f extends

continuously to D̄ with compact support, we define

∫
D
ω ∶= ∫

D
fdx1⋯dxn,

this being the Riemann integral.

Here is our first generalization of the Fundamental Theorem of Calculus to higher dimen-

sions.

Theorem 43.2 (Stokes’s Theorem, first version). For ω ∈ Ωn−1
c (Rn), we have

∫
Rn
dω = 0.

Proof. We may write

ω = ωidxi ∧⋯ ∧ d̂xi ∧⋯ ∧ dxn.
Then

dω =
n

∑
i=1
(−1)i−1∂ωi

∂xi
dx1 ∧⋯ ∧ dxn.

The integral of each term vanishes:

∫
Rn

∂ωi
∂xi

dx1⋯dxn = lim
R→∞∫

R

−R
⋯[∫

R

−R

∂ωi
∂xi

dxi]dx1⋯d̂xi⋯dxn

by Fubini’s theorem. Since ω has compact support, for R sufficiently large, we have

∫
R

−R

∂ωi
∂xi

dxi = ωi∣xi=R − ωi∣xi=−R = 0.

□

Remark 43.3. Later, we will obtain a version of Stokes’s theorem for a domain D ⊂ Rn

with smooth boundary that you may have seen before. One can actually get this directly

from the previous theorem by inserting a cutoff φ:

0 = ∫
Rn
d(φω) = ∫ φdω + ∫ dφ ∧ ω.

If one lets φ approach the characteristic function of D, then the first term approaches ∫D dω;
while if dφ also approaches a “δ-function” concentrated on the boundary of D, then the

second term approaches ±∫∂D ω. We will not take this approach, but will instead learn first

how to integrate over general manifolds (with boundary) in order to make sense of the

boundary term.

We now come to the key property that will allow us to define integrals over manifolds.

Theorem 43.4 (Change-of-variables). Let D,E ⊂ Rn be open sets and φ ∶ D → E a diffeo-

morphism. If ω is integrable on E and φ is orientation-preserving, then

∫
D
φ∗ω = ∫

E
ω.

If φ is orientation-reversing, we have

∫
D
φ∗ω = −∫

E
ω.
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First proof. Letting ω = f(x)dx1 ∧⋯ ∧ dxn, Proposition 37.7(c) gives

φ∗ω = f ○ φdetφdx1 ∧⋯ ∧ dxn = f ○ φ∣detφ∣dx1 ∧⋯ ∧ dxn

since φ is orientation-preserving. This gives us

∫
D
φ∗ω = ∫

D
(f ○ φ) ∣detφ∣dx1⋯dxn.

By the ordinary change-of-variable formula from multivariable calculus (which is a big pain

to prove), the latter is equal to ∫E ω. □

Second proof. We give another proof under the assumption that φ extends to an orientation-

preserving diffeomorphism of Rn such that φ ≡ 1 outside a large compact set, and ω ∈ Ωn
c (Rn).

In this case, we can define a smooth map

φt = (1 − t)φ + t1 ∶ Rn → Rn.

Let Xt = dφt

dt , which is compactly supported. By definition of the Lie derivative and Cartan’s

formula, we have
d

dt
φ∗tω =LXtφ

∗
tω = d(Xt ⌟ φ∗tω),

since dω = 0 for a top form. Integrating from zero to one (as in the proof of Theorem 40.1),

we get

ω − φ∗ω = φ∗1ω − φ∗0ω = d(∫
1

0
Xt ⌟ φ∗tω) .

Integrating both sides and applying Theorem 43.2, we obtain the result. □

Remark 43.5. With regard to the second proof, here are two things to think about: how

can it be extended to cover the general case? And, what goes wrong with the argument

when φ is not orientation-preserving?

44. Orientation of manifolds (Mon 12/2-Wed 12/4)

We have seen above that integration is sensitive to orientation. We have already discussed

orientations of general vector bundles; below, we will simply define a manifold to be ori-

entable if and only if its tangent bundle is orientable. Before discussing this in detail, we

include a piece that could already have appeared in §33.

44.1. Double cover corresponding to a real line bundle. Let L → M be a real line

bundle. Since each fiber Lx is isomorphic to R, Lx ∖ {0} consists of exactly two components

{[v] , [−v]}, where v ∈ Lx is any nonzero vector and [v] denotes the orbit of v under mul-

tiplication by R+. We can define a manifold ML, which comes with a 2-to-1 covering map

π ∶ML →M, as follows. As a set, ML is equal to the set of all points

(x, [v]),
where v ∈ Lx. To give ML the structure of a manifold, one can post-compose the charts of

M with arbitrary nonvanishing local sections of L → M (which exist because L is locally

trivial). The transition functions of ML are then identical to those of M, and by the smooth
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manifold chart lemma, ML is a manifold. It is an exercise on HW13 to check the details of

this construction.

Lemma 44.1. Suppose that M is connected. Then L → M is trivial ⇐⇒ ML is discon-

nected.

Proof. (Sketch) If L is trivial then it has a nonvanishing global section s. Then −s is also

a nonvanishing global section, and we have s(M) ⊔ −s(M) =ML. For the other direction, if

ML is disconnected, then it has exactly two connected components. A global nonvanishing

section of ML → M can be defined by choosing one of the components and mapping each

point x ∈M to the point in π−1(x) that lies in that component. Using a partition of unity,

one can lift this section of π to a global section of L. It is again an exercise on HW13 to

check the details. □

Example 44.2. If L is the Möbius bundle over S1, the orientation double coverML is again

S1. This is connected, i.e., the Möbius strip is nontrivial.

44.2. The orientation double cover. We now apply the previous construction to the case

L = T ∗M ∶ let
M̂ ∶=MΛnT ∗M ,

and π̂ ∶ M̂ →M be the corresponding 2-to-1 projection map. This is called the orientation

(or orientable) double cover of M.

Definition/Lemma 44.3. A connected smooth manifold M is called orientable if the

following equivalent conditions are true.

1. TM is an orientable vector bundle over M (see Definition 33.1).

2. T ∗M is an orientable vector bundle over M

3. M̂ is disconnected

4. There exists an atlas {(Ua, φa)} such that the transition maps are all orientation-

preserving

5. For each [γ] ∈ π1(M,p), the lift γ̂ ∶ [0,1] → M̂ is closed, i.e. γ̂(0) = γ̂(1).

Proof. Think through this as an exercise. The proof that (4) is equivalent to (1-2) is very

similar to that of Proposition 33.5. □

Example 44.4. Consider the total space of the Möbius bundle, per Example 1.9. Letting

γ ∶ [0,1] → S1 × {0} be the zero section, it is easy to write down a frame over γ, which

corresponds to a lift γ̂ to the orientation cover, so that the frames at t = 0 and at t = 1

correspond to opposite orientations. This means that γ̂ is not a closed loop, so the Möbius

strip is not orientable.

We will also need the following criterion below.
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Corollary 44.5 (Lee, Theorem 15.36). Suppose that there exists a connected, orientable,

normal16 covering space π ∶ N →M. Then M is orientable if and only if Autπ(M), the group

of diffeomorphisms α ∶ N → N such that π ○ α = π, consists only of orientation-preserving

diffeomorphisms.

Proof. For a normal covering space, the elements of Autπ(M) are induced by lifting loops in

M. A little bit of thought using (5) of the previous Definition/Lemma gives the result. (See

Lee for an alternative argument.) □

44.3. Induced orientation. Given a submanifold S ⊂M and a section N ∈ Γ(TM ∣S) such
that Nx /∈ TxS for all x ∈ S, we may define the induced orientation on S as follows:

{v1, . . . , vn−1} ⊂ TxS is oriented ⇐⇒ {Nx, v1, . . . , vn−1} ⊂ TxM is oriented.

Example 44.6. The standard orientation on Sn ⊂ Rn+1 is, by definition, the orientation

induced by the outward-pointing normalNx = xi ∂
∂xi
. For example, at the north pole p ∈ S2, we

have Np = ∂
∂z . Since [{ ∂∂z , ∂∂x , ∂∂y}] = [{ ∂∂x , ∂∂y , ∂∂z}] , the frame { ∂∂x , ∂∂y} is oriented at p ∈ S2.

Since the upper stereographic chart is connected, { ∂∂x , ∂∂y} is an oriented frame there; in

particular, {x, y} is an oriented coordinate system. The lower stereographic chart has to be

reversed.

Now consider the projection π ∶ Sn → RPn. The automorphism group Autπ = ⟨±1⟩ . Since
the antipodal map preserves the outward normal, it preserves the orientation on Sn if and

only if it preserves the orientation on Rn+1. This is the case if and only if n + 1 is even. By

Corollary 44.5, we conclude that

RPn is orientable ⇐⇒ n is odd.

We knew this for n = 1 since RP1 ≅ S1, and for n = 3 since

RP3 ≅ S3/ ± 1 ≅ SU(2)/ ± 1 ≅ SO(3)
is a Lie group (by §28), hence parallelizable.

45. Integration on manifolds (Wed 12/4-Fri 12/6)

Definition/Lemma 45.1. Let M be an oriented smooth manifold of dimension n. Given

a compactly-supported top form ω ∈ Ωn
c (M), the integral of ω over M is defined as follows.

Let {(Ui, φi)} be a locally finite oriented atlas (which exists by Definition/Lemma 44.3.4)

and subordinate partition of unity {ρi}, and define

∫
M
ω ∶= ∑

i
∫
φi(Ui)

(φ−1i )∗(ρiω).

16By definition, this means that Autπ acts transitively on fibers. Equivalently, the image of π1(N) in
π1(M) is a normal subgroup. In particular, if N is simply connected (i.e. the universal cover), then π is

normal.
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This is independent of the oriented atlas and partition of unity, and invariant under orientation-

preserving diffeomorphisms. I.e., if F ∶ M → N is a diffeomorphism between two oriented

manifolds that preserves orientation, then

∫
M
F ∗ω = ∫

N
ω

for every ω ∈ Ωn
c (N).

Proof. Let {(Ũj, φ̃j)}, be a different cover with the same orientation, and {ρ̃j} a subordinate

partition of unity. We must check that the definitions agree. Notice that since ω is compactly

supported and the covers are locally finite, all of the sums involved are actually finite, so we

can manipulate them without worrying. We have

∑
i
∫
φi(Ui)

(φ−1i )∗(ρiω) = ∑
i
∫
φi(Ui)

(∑
j

ρ̃j)(φ−1i )∗(ρiω)

= ∑
i,j
∫
φi(Ui)

(φ−1i )∗(ρ̃jρiω)

= ∑
i,j
∫
φi(Ui∩Ũj)

(φ−1i )∗(ρ̃jρiω).

(45.1)

We apply change-of-variables, Theorem 43.4, to the transition function φi○φ̃−1j ∶ φ̃j(Ũj∩Ui) →
φi(Ui ∩ Ũj), to obtain

(45.1) = ∑
i,j
∫
φ̃j(Ũj∩Ui)

(φ̃−1j )∗(φi)∗(φ−1i )∗(ρjρiω)

= ∑
i,j
∫
φ̃j(Ũj))

(φ̃−1j )∗(ρiρjω)

= ∑
j
∫
φ̃j(Ũj)

(φ̃−1j )∗ ((∑
i

ρi)ρjω)

= ∑
j
∫
φ̃j(Ũj)

(φ̃−1j )∗ (ρjω) .

This completes the proof of independence.

To show diffeomorphism-invariance, choose a system of oriented charts and a partition-of-

unity on N, and simply pull this back by F to a system on M. Theorem 43.4 shows that the

sum defining the integral on N is equal term-by-term with the sum defining the integral on

M. □

Remark 45.2 (Friday 12/6). Let us point out that this is the only possible definition of

the integral which is both additive and diffeomorphism-invariant. For, we have

∑
i
∫
φi(Ui)

(φ−1i )∗(ρiω) = ∑
i
∫
Ui

φ∗i (φ−1i )∗(ρiω)

= ∑
i
∫
M
ρiω

= ∫
M
∑
i

ρiω = ∫
M
ω.
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Theorem 45.3 (Stokes’s Theorem, 2nd version). For ω ∈ Ωn−1
c (M), we have

∫
M
dω = 0.

Proof. We have

∫
M
dω = ∫

M
d(∑

i

ρiω) = ∑
i
∫
M
d(ρiω)

= ∑
i
∫
φi(Ui)

(φ−1i )∗d(ρiω)

= 0.

Here we have used diffeomorphism-invariance of the integral and the first version, Theorem

43.2. □

Remark 45.4. This result actually implies the full version of Stokes that we will prove

below; see Remark 43.3 above. However, it makes more sense to first introduce manifolds

with boundary and define the two sides of the Theorem independently, before proving that

they agree.

Example 45.5 (Friday 12/6). Let G be a Lie group. Choose an orientation for TeG, and

let ω be a left-invariant n-form on G which is compatible with the orientation at e. Then ω

defines an orientation on G with respect to which ω is positive at each point. Notice that

by left-invariance, ω is unique up to scaling by a positive constant.

Is ω also right-invariant? Consider R∗gω. We have

L∗hR
∗
gω = R∗gL∗hω = R∗gω,

so that R∗gω is again left-invariant. We must therefore have

R∗gω = λgω

for some constant λg.

Suppose now that G is compact, and choose ω such that ∫G ω = 1. By diffeomorphism

invariance of the integral, we have

∫
G
R∗gω = ∫

G
ω = 1.

This gives

λg = 1
for all g ∈ G, which shows that ω is in fact also right-invariant.

We have proven that every compact Lie group has a unique bi-invariant probability mea-

sure, called the Haar measure. One can define the integral of a function by

∫
G
f = ∫

G
fω.

This is a very useful fact in geometry as well as in the representation theory of compact

Lie groups. One very interesting theorem to mention is the following. For a Lie group G

with Lie algebra g = Lie(G), let g∗ denote the space of left-invariant 1-forms on G. The k’th
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wedge product g∗ is equal to the space of left-invariant k-forms. Left-invariance is preserved

by d, so these spaces form a complex

0→ R d→ g∗
d→ Λ2g∗

d→ ⋯ d→ Λng∗ → 0,

which is a finite-dimensional sub-complex of the de Rham complex. Its differentials can be

computed just from the structure constants of g. The following can be proved by a careful

averaging procedure using the Haar measure.

Theorem 45.6 (Cartan-Eilenberg). Suppose that G is compact and connected. The inclu-

sion Λ∗g∗ → Ω∗(G) induces isomorphisms on all cohomology groups.

46. Integration on manifolds with boundary (Wed 12/4-Fri 12/6)

Definition 46.1 (Wednesday 12/4). A smooth manifold with boundary is a Hausdorff,

second-countable topological space endowed with a smooth atlas consisting of charts whose

codomains are open sets in

Hn = {(x1, . . . , xn) ∈ Rn ∣ xn ≥ 0}
in the subspace topology.

The charts of a manifold with boundary fall into two types: those whose codomain is

an open set entirely contained in H̊n = {(x1, . . . , xn) ∈ Rn ∣ xn > 0}, which are the same as

ordinary smooth manifold charts, and those which intersect Rn−1 × {0} nontrivially. Note

that a chart of the first kind can never be diffeomorphic to a chart of the second kind. Also

note that for two charts of the second kind, because the transition map is required to be a

diffeomorphism, it must preserve Rn−1 × {0}. The boundary

∂M = {x ∈M ∣ x ∈ φ−1 (Rn−1 × {0}) for some chart φ}
is therefore a smooth manifold without boundary of dimension n − 1.

Almost all of what we know for smooth manifolds works for smooth manifolds with bound-

ary:

● A manifold with boundary has a tangent bundle TM which is a rank n smooth bundle

over M. The tangent bundle of the boundary

T∂M ⊂ TM ∣∂M
is a subbundle of the restriction, of rank n − 1.

● Partitions of unity still work. Note that the restriction of a partition of unity to ∂M

is a partition of unity.

● A vector field X is a section of Γ(TM). We say that X is tangent to the boundary if

X ∣∂M is a section of the subbundle T∂M ⊂ TM ∣∂M .

● A vector field X tangent to ∂M generates a flow that preserves ∂M.
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● Differential forms are the same.

● Integration is the same.

Definition 46.2. ● Let v ∈ TxM for x ∈ ∂M. We say that v is outward-pointing if

there exists a smooth path γ ∶ (−ε,0] →M with γ(0) = x and γ′(0) = v, and strictly

outward-pointing if also v /∈ Tx∂M. Inward-pointing is the same.

● Suppose thatM is oriented. The Stokes orientation on ∂M is the induced orienta-

tion (in the sense of Definition 44.3) by any strictly outward-pointing vector fieldN on

∂M. In other words, {v1, . . . , vn−1} is positively oriented in Tx∂M iff {Nx, v1, . . . , vn−1}
is positively oriented in TxM.

Examples 46.3. ● The upper-half-space Hn is itself a manifold with boundary with

a single chart, as is any open subset. The boundary ∂Hn is equal to Rn−1 × {0} but
possibly with a different orientation:

(46.1) [{− ∂

∂xn
,
∂

∂x1
, . . . ,

∂

∂xn−1
}] = (−1)n [{ ∂

∂x1
, . . . ,

∂

∂xn
}] .

● The closed unit ball Bn = {x ∈ Rn ∣ ∣x∣ ≤ 1} is a manifold with boundary ∂Bn = Sn−1.
By definition, the Stokes orientation agrees with the standard orientation (see §44.3).

Theorem 46.4 (Stokes’s Theorem, 3rd version). Suppose that M is an oriented manifold

with boundary and ∂M is given the Stokes orientation. For any ω ∈ Ωn
c (M), we have

∫
∂M

ω = ∫
M
dω.

Proof. We first prove the special case M = Hn; let ω ∈ Ωn
c (Hn). As in the proof of Theorem

43.2, we write

ω = ωidx1 ∧⋯ ∧ d̂xi ∧⋯dxn

and

dω =
n

∑
i=1
(−1)i−1∂ωi

∂xi
dx1 ∧⋯ ∧ dxn.

This gives

∫
Hn
dω = ∑(−1)i−1∫

∞

0
∫
∞

−∞
⋯∫

∞

−∞

∂ωi
∂xi

dx1⋯dxn.

By the 1D fundamental theorem of calculus (see the proof of Theorem 43.2), all terms vanish

except the last one. So the latter expression is equal to

(−1)n−1∫
∞

−∞
⋯∫

∞

−∞
∫
∞

0

∂ωn
∂xn

dxndx1⋯dxn−1 = (−1)n∫
∞

−∞
⋯∫

∞

−∞
ωn(x1, . . . , xn−1,0)dx1⋯dxn−1.

In view of (46.1), the chart {x1, . . . xn−1} is (−1)n-oriented on ∂Hn ≅ Rn−1 × {0}. Therefore
the last expression is equal to

∫
∂Hn

ω,

as claimed.
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For the general case, let {(Ui, φi)} be an oriented atlas for M and {ρi} a subordinate

partition of unity. We have

∫
M
dω = ∑

i
∫
M
d(ρiω) = ∑

i
∫
Hn
d ((φ−1i )∗ρiω)

= ∑
i
∫
∂Hn
(φ−1i )∗ρiω

= ∑
i
∫
∂M

ρiω = ∫
∂M

ω,

where we have used diffeomorphism invariance and the first case. □

Here is a simple but interesting corollary.

Corollary 46.5. Let M be a compact, oriented manifold with boundary. There does not

exist a (smooth) retraction r ∶M → ∂M.

Proof. Suppose for contradiction that there exists a smooth retraction r. Let ω be any posi-

tively oriented (n − 1)-form on ∂M (with the Stokes orientation). We have

0 < ∫
∂M

ω = ∫
∂M

r∗ω

since r∣∂M = 1. Note that r∗ω is a globally defined form on M, which has compact support

since M is compact. Stokes’s Theorem gives

0 < ∫
∂M

r∗ω = ∫
M
d(r∗ω) = ∫

M
r∗(dω).

But at the last step, d is the exterior derivative on ∂M, which has dimension n − 1, so that

dω = 0. We have proven 0 < 0, a contradiction. □
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Part 10. Cohomology and integration

47. Compactly-supported de Rham cohomology and the integration map

(Fri 12/6)

We have seen above that integration and exterior differentiation are related via Stokes’s

Theorem. Two subtleties are the question of orientation and the requirement that the form

in question be compactly supported. In order to describe the precise relationship between

integration and de Rham cohomology, it is convenient to introduce the following variant.

Definition 47.1. ● The de Rham cohomology groupswith compact support,Hp
c (M),

are the cohomology groups of the compactly-supported de Rham complex:

0→ C∞c (M)
d→ Ω1

c(M)
d→ ⋯ d→ Ωn

c (M) → 0.

Notice that these agree with the ordinary de Rham groups in the case that M is

compact.

● Suppose that M is an oriented manifold without boundary. Define the integration

map

IM ∶Hn
c (M) → R

[ω] ↦ ∫
M
ω.

This is well-defined in view of Stokes’s Theorem: for η ∈ Ωn−1
c (M), we have ∫M dη = 0,

so (compact-supportedly) cohomologous forms have the same integral.

Example 47.2. ● M = Sn. Observe that ω ∈ Ωn(Sn) is exact if and only if ISn(ω) = 0.
For, we have shown in Theorem 41.2 using Mayer-Vietoris that

Hn
dR(Sn) =Hn

c (Sn) = R.
The integral of any positive form is positive, so ISn is surjective; therefore its kernel

is exactly the exact forms.

● M = R. We have H0
c (R) = 0, since the only constant, compactly-supported function

on R is zero. Meanwhile, we have H1
c (R) = R, since a compactly-supported 1-form

α on R is the derivative of a compactly-supported function if and only if IR(α) = 0;
indeed, the primitive f(x) = ∫

x

−∞α will have compact support if and only if ∫
∞
−∞α = 0.

Notice that the answers for compactly-supported cohomology of R are reversed

from the answers for ordinary cohomology; we will see that this is also true of Rn,

and reflects a general duality phenomenon that holds for all orientable manifolds.

48. Top cohomology (Mon 12/9)

Notice that in both cases of Example 47.2, we had Hn
c (M) = R and the integration map

was an isomorphism. We will now prove that this is true of oriented manifolds in general.

The proof will follow by induction from the case of Rn ∶
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Theorem 48.1. We have

Hp
c (Rn) =

⎧⎪⎪⎨⎪⎪⎩

0 0 ≤ p < n
R p = n,

and the integration map IRn is an isomorphism.

The case n = 1 is the second bullet in Example 47.2, and the general case follows directly

from:

Lemma 48.2 (Compactly-supported Poincaré Lemma). Let ω ∈ Ωp
c(Rn) be closed. If 1 ≤ p <

n, then there exists a compactly-supported (p − 1)-form η with dη = ω. If p = n, there exists

such an η if and only if ∫Rn ω = 0.

Proof. We have done the n = 1 case above, so assume n ≥ 2.
Fix a large ball B such that supp η ⊂ B, and also take B′ ⋑ B.
By the ordinary Poincaré Lemma, there exists η0 ∈ Ωp−1(Rn) with dη0 = ω; η0 is not

necessarily compactly supported, but we do have dη = 0 on Rn ∖ B̄. We now try to adjust η0
to have compact support.

Case 1. p = 1. We have Rn ∖ B̄ is connected, so η0 = c is constant there. We may take

η = η0 − c.
Then η is compactly supported and dη = dη0 = ω.

Case 2. 1 < p < n. As observed above, η0∣Rn∖B̄ is closed. Let S = ∂B̄′ ≅ Sn−1 be the

boundary of B̄′, which is a large sphere. We have Hp−1(Rn ∖ B̄) ≅ Hp−1(S) = 0, since

p − 1 < n − 1. Hence, there exists η ∈ Ωp−2(Rn ∖ B̄) such that dγ = η0 there. Let ψ be a bump

function for Rn ∖ B̄′ ⊂ Rn ∖B, and let

η = η0 − d(ψγ).
This vanishes identically on Rn ∖ B̄′, and satisfies dη = dη0 = ω as desired.

Case 3. p = n and IRn(ω) = 0. We have Hn−1
dR (Rn ∖ B̄) ≅ Hn−1

dR (S), where the isomorphism

is induced by the restriction map. Hence, η0 is exact if and only if its restriction to S is

exact; by the first bullet in Example 47.2, this is true if and only if IS(η0∣S) = 0. Applying
Stokes’s Theorem together with our assumption on ω, we have

0 = ∫
Rn
ω = ∫

B̄′
ω = ∫

B̄′
dη0 = ∫

S
η0.

Therefore IS(η0) = 0, so η0 is exact on S, hence exact on Rn ∖ B̄, i.e. η0 = dγ there. As

before, we can take η = η0 − d(ψγ). □

Theorem 48.3. Let M be a connected, oriented, smooth n-manifold. The integration map

IM ∶Hn
c (M)

∼→ R

is an isomorphism. In particular, Hn
c (M) is 1-dimensional.

Proof. We can assume n ≥ 1, since the result is obvious for a point. We already know that

IM is surjective, since the integral of any positive form is positive. Hence, it suffices to prove

that IM is injective: i.e., for ω ∈ Ωn
c (M), if ∫M ω = 0 then there exists η ∈ Ωn−1

c (M) such that

dη = ω.
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We argue by induction. Let {Ui} be a countable locally finite open cover with Ui ≅ Rn for

each i (for instance, if Ui are coordinate balls). Let

Mk = ∪ki=1Ui.
By relabeling the charts, we may assume that Mk ∩Uk+1 ≠ 0 for each k.

Since each compactly supported form is supported in Mk for k sufficiently large, it suffices

to prove that for ω ∈ Ωn
c (Mk) with ∫Mk

ω = 0, there exists η ∈ Ωn−1
c (Mk) such that dη = ω. We

will prove this statement by induction.

For the base case, we have M1 = U1 ≅ Rn, so the result follows immediately from Lemma

48.2.

Assume the result forMk, and let ω ∈ Ωn
c (Mk+1) with ∫Mk+1

ω = 0. Choose ω ∈ Ωn
c (Mk∩Uk+1)

such that ∫M θ = 1. Also let {φ,ψ} be a partition of unity subordinate to {Mk, Uk+1}. Define

c = ∫
Mk

φω.

Then suppφω − cθ ⊂Mk, and moreover

∫
Mk

φω − cθ = 0

by choice of c. By the induction hypothesis, there exists α ∈ Ωn
c (Mk) such that

dα = φω − cθ.
Next, observe that

0 = ∫ (φ + ψ)ω = c + ∫ ψω = ∫ (ψω + cθ) .
Moreover, ψω+cθ is supported in Uk+1 ≅ Rn. By Lemma 48.2, there exists β ∈ Ωn

c (Uk+1) such
that

dβ = ψω + cθ.
Putting these together, we have

d(α + β) = (φω − cθ) + (ψω + cθ) = (φ + ψ)ω = ω.
This completes the induction step, and the proof. □

Corollary 48.4. For M connected and orientable, we have:

1. If M is compact then Hn
dR(M) ≅ R, with the integration map giving the isomorphism.

2. If M is noncompact then Hn
dR(M) = 0.

If M is connected and non-orientable, then Hn
dR(M) = 0.

Proof. For (1), simply recall that Hn
dR(M) =Hn

c (M) ifM is compact, and apply the previous

Theorem.

For (2), one can construct a global primitive for any closed form using an exhaustion of

M by compact sets; see Lee, Theorem 17.32.

For the non-orientable case, one can pull back a top form to M̂ to obtain a form with

integral zero, construct a primitive there by Theorem 48.3, and take its average under the
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reversal map to obtain a primitive that descends back to M. See Lee, Theorem 17.34 for a

different argument. □

49. The de Rham isomorphism (Mon 12/9)

We briefly recall the definition of singular homology and cohomology. Let

∆p = {x ∈ Rp+1 ∣
p

∑
i=0
xi = 1,0 ≤ xi ≤ 1}

be the standard p-simplex. The space of singular p-chains in M

Cp(M,R)

is the free R-vector space on the set of all maps ∆p →M. A chain is a finite formal R-linear
combination of maps, σ = ∑ ciσi. For instance, ∆p itself can be viewed as a chain in Cp (Rp+1)
via the inclusion map. The boundary ∂∆p ∈ Cp−1(Rp+1) is the formal sum of the faces of

∆p, with signs determined by the Stokes orientation. Extending the boundary operator ∂

linearly to chains, one can check that

∂ ○ ∂ = 0.

Geometrically, this reflects the fact that the boundary of a manifold with boundary has no

boundary.

Given a singular p-chain σ ∈ Cp(M,R), we can form its boundary ∂σ ∈ Cp−1(M,R) by
restricting the values of each simplex to ∂∆n. This operator again satisfies ∂2 = 0, so we

obtain a complex

⋯ → Cp+1(M,R) ∂→ Cp(M,R) ∂→ ⋯.
The singular homology groups Hp(M,R) are, by definition, the homology groups of this

complex. Letting Cp(M,R) ∶= Cp(M,R)∗ be the space of singular p-cochains, we can also

form the dual complex

⋯ δ← Cp+1(M,R) δ← Cp(M,R) δ← ⋯,
where δ is the transpose of ∂. The singular cohomology groupsHp(M,R) are the homology

groups of this complex.

Note that any linear functional on chains that vanishes on boundaries defines a cohomol-

ogy class. (In fact, there is a natural map Hp(M,R) →Hp(M,R)∗ given by evaluating on a

chain representing a homology class, and this map turns out to be an isomorphism since we

are taking real coefficients.) A somewhat long but routine argument involving the Whitney

Approximation Theorem, see Lee’s book, shows that it is sufficient to define a linear func-

tional on smooth chains, i.e. formal sums of smooth maps ∆p →M, that vanishes on chains

which are smooth boundaries. (In fact, the cohomology groups obtained from these so-called

“smooth singular” cochains are isomorphic to the singular homology groups.) Integration

against a closed form gives just such a functional, because of
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Theorem 49.1 (Stokes’s Theorem, fourth version). Let σ be a smooth singular p-chain in

M and ω ∈ Ωp−1(M). We have

∫
∂σ
ω = ∫

σ
dω.

Here, the integral over a chain σ = ∑ ciσi is defined by

∫
σ
ω = ∑

i

ci∫
∆p

σ∗i ω.

In this way, we obtain the de Rham map

Ip ∶Hp
dR(M) →Hp(M,R)

[ω] ↦ ∫
∗
ω.

Theorem 49.2. For any smooth manifold, the de Rham map is an isomorphism.

The proof, see Lee Ch. 17, is a somewhat-more-involved version of the proof of Theorem

48.3 above. Notice that, combined with a calculation of the top singular cohomology of a

manifold, as in Hatcher, the p = n case follows from Corollary 48.4. Also, since

H1(M,R) =H1(M,R)∗ = (π1(M,p)ab)∗ = Hom (π1(M,p),R)
by the Hurewicz Theorem, the p = 1 case is Theorem 40.8.

50. Mapping degree (Wed 12/11)

We shall now discuss two applications of de Rham cohomology and in particular of The-

orem 48.3. The first is to give a handy definition and interpretation of the degree of a map

between compact oriented manifolds of the same dimension.

Recall that if F ∶M ∼→ N is a diffeomorphism and ω ∈ Ωn
c (N) is a top form, then we have

∫
M
F ∗ω =

⎧⎪⎪⎨⎪⎪⎩
∫N ω F orientation-preserving

−∫N ω F orientation-reversing.

The first case is part of Definition/Lemma 45.1, and the second follows from the first because

reversing orientation negates the integral. In the case that M and N are compact, we can

generalize this result to arbitrary smooth maps, as follows.

Theorem 50.1 (Lee, Theorem 17.35). Suppose that M and N are compact, oriented, n-

dimensional smooth manifolds, and let F ∶M → N be a smooth map. There exists a unique

integer k ∈ Z, called the degree, deg(F ), of F, with the following two properties:

(a) For any smooth n-form ω ∈ Ωn(N), we have

∫
M
F ∗ω = k∫

N
ω.

(b) If q ∈ N is a regular value of F, then

k = ∑
x∈F−1(q)

sgn (x),
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where

sgn (x) =
⎧⎪⎪⎨⎪⎪⎩

1 if dFx is orientation-preserving

−1 if dFx is orientation-reversing.

Remark 50.2. ● Observe that the sum in (b) is finite: since q is a regular value, by

the inverse function theorem, F −1(q) ⊂M is discrete, hence finite sinceM is compact.

● Since ω is a top form, it is closed. By homotopy-invariance of the integral of the

pullback of a closed form, (a) implies that if F ≃ G are homotopic then deg(F ) =
deg(G). Degree is therefore a homotopy invariant. In the case N = Sn, there is also a

converse due to Hopf: two maps from a compact n-manifold to Sn are homotopic if

and only if they have the same degree. See Milnor, Topology from the differentiable

viewpoint.

Proof of Theorem 50.1. By Theorem 48.3, we know that

[ω] = [ω′] ∈Hn(N) ⇐⇒ ∫
N
ω = ∫

N
ω′.

Let θ be any smooth n-form on N such that ∫N θ = 1. Define

k ∶= ∫
M
F ∗θ.

(We do not yet know that k ∈ Z.) To prove (a), let ω ∈ Ωn(N) and put a = ∫M ω. We have

[ω] = a [θ] , since these have the same integral. Since the pullback of cohomologous forms

are cohomologous, we have

∫
M
F ∗ω = a∫

M
F ∗ω = ak = k∫

N
ω.

This proves (a).

Next, we prove (b). Suppose that q is a regular value.

Case 1. F −1(q) = {x1, . . . , xm} is nonempty. Applying the inverse function theorem, we

may choose a connected neighborhood U ∋ q and neighborhoods Vi ∋ xi for i = 1, . . . ,m, such
that the restriction F ∣Vi ∶ Vi

∼→ U is a diffeomorphism for each i. Choose ω ∈ Ωn
c (U) such that

∫U ω = 1. By (a), we have

k = ∫
M
F ∗ω = ∑

i
∫
Vi
F ∗ω = ∑ sgn (x),

as claimed.

Case 2. F −1(q) = ∅. By compactness, F (M) ⊂ N is closed. We can take ω ∈ Ωn
c (N∖F (M))

with ∫N ω = 1. But then F ∗ω = 0, so

∫
M
F ∗ω = ∫

M
0 = 0 ⋅ ∫

N
ω = k.

So both sides of (b) are zero, and we are done.

It remains to show that k is in fact an integer. By Sard’s theorem, the set of regular values

of F is nonempty. Letting q be any regular value and applying (b), we learn that k is an

integer (since the sum on the RHS of (b) is manifestly so). □

We have the following generalization of Corollary 46.5.
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Theorem 50.3. Suppose N is a compact, connected, oriented, smooth n-manifold and X

is a compact oriented smooth (n + 1)-manifold with connected boundary. If a smooth map

f ∶ ∂X → N extends smoothly to F ∶X → N, then deg(f) = 0.

Proof. Let ω ∈ Ωn(N) with ∫N ω = 1. Using Stokes, we have

deg(F ) = ∫
∂X
f∗ω = ∫

∂X
F ∗ω = ∫

X
dF ∗ω = ∫

X
F ∗(dω) = 0,

since dω ∈ Ωn+1(N) = 0. □

Corollary 50.4 (Brouwer Fixed-Point Theorem). Every (smooth) map from B̄n to itself

has a fixed point.

Proof. Suppose, for contradiction, that F ∶ B̄n → B̄n has no fixed points. Then we can define

a smooth map G ∶ B̄n → Sn−1 by

G(x) = x − F (x)
∣x − F (x)∣ .

Let

g = G∣Sn−1 ∶ Sn−1 → Sn−1.

By the previous Theorem, we have deg(g) = 0. But we can also define

H ∶ Sn−1 × I → Sn−1

(x, t) ↦ x − tF (x)
∣x − tF (x)∣ .

(Note that the denominator here also does not vanish, since x ≠ F (x) and both belong to

Sn.) This is a homotopy between the identity and g, which implies that deg(g) = deg(1) = 1.
We have reached a contradiction. □

51. Poincaré duality (Wed 12/11)

As you may know from algebraic topology, there is a ring structure on the cohomology

groups of any space. This is particularly easy to describe in terms of de Rham cohomology.

Suppose that ω and µ are closed forms of degrees k and ℓ, respectively, on a smooth manifold

M. Then ω ∧ µ is closed, by the Leibniz rule. Moreover, if µ = dη is exact, then

ω ∧ µ = (−1)kd(ω ∧ η)
is also exact. This shows that the wedge product descends to a map on cohomology classes,

∪ ∶Hk(M) ⊗Hℓ(M) →Hk+ℓ(M)
([ω] , [µ]) ↦ [ω ∧ µ] =∶ [ω] ∪ [µ] ,

called the cup product. Notice that [ω] ∪ [µ] = (−1)kℓ [µ] ∪ [ω] , so this makes H∗(M) into
a graded-commutative ring. It is clear from the definition that any smooth map F ∶M → N

induces a ring homomorphism

F ∗ ∶H∗(N) →H∗(M).
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Examples 51.1. The following examples are well-known:

● H∗(CPn) = R [α] /(αn+1), α ∈H2(CPn).

● H∗(Tn) = Λ∗(Rn), where Rn = ⟨[dx1] , . . . , [dxn]⟩ .

Suppose further that µ is compactly supported; then ω ∧µ is again compactly supported.

So the cup product induces a map

Hk(M) ⊗Hℓ
c(M) →Hk+ℓ

c (M).
Now assume thatM is oriented and take ℓ = n−k.We can post-compose with the integration

map to obtain a pairing

(51.1) Hk(M) ⊗Hn−k
c (M)

∪→Hn
c (M)

IM→ R.

We have the following fundamental fact about orientable manifolds.

Theorem 51.2 (Poincaré duality). The pairing (51.1) is perfect, i.e., induces isomorphisms

Hn−k
c (M)

∼→Hk(M)∗

Hk(M) ∼→Hn−k
c (M)∗.

The theorem can be proved by imitating the proof of the de Rham theorem in Lee’s book,

which in turn is a version of the proof of Theorem 48.3 above. You will do so on homework.

Another, perhaps more satisfying, proof can be given using Hodge theory, which we hope to

develop in Math 765.
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